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Abstract

Double copy theory is conventionally presented as a relationship between scattering am-

plitudes in gauge and gravitational theories that is informally captured by the statement:

(Yang-Mills)2 = (gravity). However, more recently, the double copy procedure has been

shown to hold in relating the equations of motion of gravity to that of biadjoint scalar the-

ory and Yang-Mills theory, respectively, following suitable choices of ansätze and using a

Kerr-Schild form of the metric. This work explores the cases of classical topologically mas-

sive theories in three spacetime dimensions; introducing the appropriate Chern-Simons terms

to provide the 3-dimensional theories with ‘topological masses’. In particular, it is shown

that the equations of motion of topologically massive gravity in (2+1)-dimensions are able

to reproduce the time-dependent equations of motion of topologically massive Yang-Mills

theory and of massive biadjoint scalar theory (also in (2+1)-dimensions), respectively.
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Conventions

A soon-to-be-encountered difficulty for anyone venturing into double copy literature is

the varying conventions, especially in terms of the Lie algebra structure constants and the

Minkowski metric sign choice.

In this work we always use the convention that [T a, T b] = ifabcT c, for structure constants

fabc and Lie algebra generators T a. This will be reiterated in the text when appropriate,

but we pre-empt this here to prepare the reader from the outset.

A similar ambiguity in the literature is for how one chooses the Minkowski metric. In this

work, we choose the ‘mostly plus’ metric ηµν = diag(−1,+1,+1, ...) throughout, regardless

of the dimension of spacetime under consideration.

Readers familiar with General Relativity will doubtless also be familiar with the Einstein-

Hilbert action in d-dimensions

SEH =
∫

ddx
√

|g|
( 1
κ2R+ Lmatter

)

and the corresponding equations of motion Gµν = κ2

2 Tµν . While the actual value of κ is

not altogether important to understand the results presented in this work, we include it

for completeness. The gravitational constant, κ, in d-dimensions is defined in terms of the

reduced Planck mass in d-dimensions via [1]

κ2

2 = 1(
M

(d)
Pl

)d−2 = (d− 1)(d− 2)π(d−1)/2

(d− 3)Γ
(

d+1
2

) G(d),

where G(4) is (the conventional) Newton’s gravitational constant and Γ(x) is the gamma

function. In four dimensions this gives the usual κ2 = 16πG(4), and in three dimensions the

result is indeterminate and, while this is not discussed further in this work, we continue to

use the form of the Einstein-Hilbert action above in three dimensions.

We allow for both the full metric, gµν and the base (Minkowski) metric ηµν to raise/lower

indices. We will use the convention that when an object has had an index raised by the full

metric we will write a ‘bar’ above it so that

gµαTαν = T̄µ
ν , whereas

ηµαTαν = Tµ
ν ,

which is also reiterated later in the text when appropriate.

Finally, we use ε for the Levi-Civita symbol, and ϵ for the Levi-Civita tensor density.
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1 Introduction

“A method is more important than a discovery, since the right method will lead to

new and even more important discoveries.”

– Lev Landau [2].

The scientific description of gravity has experienced dramatic changes – from Galileo’s historical

breakthrough in understanding (that gravitational acceleration is independent of the mass) to

Einstein’s General Relativistic theory (which tells us that Galileo was correct only in some

approximation or in some limit; consider e.g. gravitational back-reaction). It is a testament

to both the complexity and the elegance of General Relativity (GR) that, over a century after

Einstein’s original work [3], it is still very much a field of active research1. Gauge theory has,

similarly, been under constant development, and it provides us with the fundamental tools to

understand much of the world we experience; the Standard Model (arguably) being its crowning

achievement.

While gravity and gauge theories, upon initial inspection, may appear to be entirely inde-

pendent, there are clear hints at a similar underlying structure. Diffeomorphism invariance in

GR and all the structures that accompany it (local symmetries, covariant derivatives, connec-

tions etc.) are reminiscent of their gauge theory counterparts [4]. Understanding gauge theories

geometrically makes this relationship more precise. Considering gauge theories in the practi-

cal context of Quantum Field Theories (QFTs) and their associated observables, the principal

measurable quantity to be found in conventional QFT calculations is the scattering amplitude,

from which a differential cross-section is computed, which is finally turned into a ‘cross-section’,

which, despite the nomenclature, is a measure of probability of some process occurring.

Double copy theory (otherwise terms ‘the double copy procedure’ or simply ‘the double

copy’) is a statement about the relationship between scattering amplitudes in gravity and in

gauge theory that makes extensive use of the Colour-Kinematics (CK) duality, commonly re-

ferred to as the Bern-Carrasco-Johansson (BCJ) duality in the context of scattering amplitudes,

after their seminal papers proposing and then describing the duality [5, 6] (in fact, some have

argued that the double copy will only work2 when the BCJ duality holds [7]). The idea of
1See, for instance, https://arxiv.org/list/gr-qc/new
2At the time of writing, September 2022.
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double copy theory is typically (informally) written as [8]

gravity = (gauge theory)2. (1.1)

The informal equality (1.1), roughly corresponding to the principal conjecture3 of double copy

theory, has its origins in string theory. In particular, it derives from an observed relationship

between open-string scattering amplitudes (called Veneziano scattering amplitudes) and closed-

string scattering amplitudes (also known as Virasoro-Shapiro scattering amplitudes) [11–14].

This relationship is summarised by the relation [11, 15]

M(s, t, u) = sin(πα′s)
πα′ A(s, t)A(s, u), (1.2)

whereM(...) is the Virasoro-Shapiro amplitude, A(...) is the Veneziano amplitude, s = (p1+p2)2,

t = (p2 + p3)2 and u = (p1 + p3)2 are the conventional Mandelstam invariants, and α′ = T−1

where T is the string tension. Importantly, (1.2) also applies to the low-energy (α′ → 0 field

theory) limit of these theories – corresponding to gluons on the open string side, and to gravitons,

dilatons and a 2-form field on the closed string side – one finds the Kawai-Lewellen-Tye (KLT)

relation for the 4-point amplitudes4 [4, 11]

Mtree
4 (1, 2, 3, 4) =

(
κ

2

)2
sAtree

4 (1, 2, 3, 4)Atree
4 (1, 2, 4, 3), (1.3)

where the Atree
4 [...] are partial colour-ordered amplitudes, related to the full amplitudes through

the expression [8]

Afull,tree
4 =

(κ2

2
)(
Atree

4 [1, 2, 3, 4]tr(T a1T a2T a3T a4) + permutations of (2, 3, 4)
)
, (1.4)

where the ai label the colour charge generator on the ith leg of the interaction (see below). The
3We say ‘conjecture’ as double copy theory is suspected to hold to all orders, but a proof does not yet exist

beyond (for the BCJ double copy in particular) tree-level [9]. However, other works on the BCJ double copy are
strong indicators that the double copy likely holds to loop-level [6, 10].

4See, in particular, chapter 7 of [4].
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expression (1.3) may be diagrammatically represented as

1

2

3

4

∝

1

2

3

4

×

1

2

4

3

(1.5)

where, on the left-hand side we have the Feynman diagram of the tree-level 4-graviton scattering

amplitude, and on the right-hand side we have the Feynman diagram of the product of two tree-

level colour-ordered 4-gluon partial5 scattering amplitudes. As is noted in [11], these relations

have been generalised in the context of string theory to higher-point tree-level amplitudes [15],

and was appropriately generalised to arbitrary numbers of external particles in the low-energy

field theory limit [17].

The utility of such a relation as (1.3) cannot be overemphasized – traditional approaches to

gravity begin with a Lagrangian, from which appropriate Feynman rules/diagrams are deduced,

and in GR we (conventionally6) also take perturbations about the Minkowski metric,

gµν = ηµν +κhµν to account for the graviton field, hµν [11]. Thereafter, one fixes the gauge, and

determines the n-point functions (starting from n = 2 ≡(propagators) up to the desired/allowed

number) and, finally, finds the scattering amplitudes. Gravitational theories – or, at least, those

gravitational theories that are common in the literature – have an incredibly disheartening

drawback: they have an infinite number of vertices of all (n ∈ N) multiplicities [11]. This is

in contrast to their gauge theory counterparts, that are limited to have only 3- and 4-point

vertices. Thus, the relation (1.3) – and the equivalent relations for the n-point amplitudes (not

shown here, see §2.1) – represents an important reduction in the complexity of the gravitational

problem one might wish to solve.

While the double copy procedure is an inherently useful calculational tool for computing

graviton scattering amplitudes, it is apparent that we do not properly understand the implica-

tions of it – we do not yet fully understand all the consequences of BCJ duality for a start [5,

7, 11].

The range of applicability of the double copy is not limited to simplifying graviton scattering

amplitudes. Similar relationships – at the centre of which lies the CK duality – exist between
5Partial amplitudes are the gauge invariant part of the full scattering amplitude, see §2.1, chapter 13 of [8],

and [16] (this final source provides useful relations for separating out the colour factors).
6The author was reminded that one could consider perturbations about a non-Minkowskian gµν , but that this

is significantly more complicated [18].
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other theories, and there is a so-called web of theories connected through the double copy, and

the best known of these are presented in table 1. While we do not investigate this web of theories,

FT⊗FT YM N = 4 sYM χPT BAS

YM gravity+ N = 4 SG BI YM

N = 4 sYM N = 4 SG N = 8 SG N = 4 sDBI N = 4 sYM

χPT BI N = 4 sDBI sGal χ PT

BAS YM N = 4 sYM χPT BAS

Table 1: Table of the web of theories linked by double copy relations (taken from [19]). The first
row and column represent which field theories we are using as ‘single copies’ for the double copy
theory, and the remaining rows and columns detail what the outcome of forming the double
copy from the field theory ‘product’. The ‘+’ for gravity is a reference to the additional dilaton
and 2-form that we find in the Yang-Mills (YM) YM⊗YM double copy. The abbreviations
are: sYM - super Yang-Mills, χPT - chiral perturbation theory, BAS - biadjoint scalar, SG -
supergravity, BI - Born-Infeld, sDBI - super-Dirac Born-Infeld, sGal - special Galileon.

table 1 should emphasise the vast range of applicability of the double copy and exemplify its

use as a powerful simplification tool for theories whose scattering amplitude computations are

intricate and/or tedious. Understanding why and how the double copy works may also provide

deeper insights into the complicated (full) theories whose results the single-copy product-spaces

are able to reproduce.

Motivated by both the insights the double copy affords, as well as the missing understanding

of precisely how BCJ duality works, Monteiro et al investigated whether the double copy could

still hold in certain classical contexts [7] – more recent work has shown that these classical results

are closely related to the scattering amplitude approach to the double copy [20]. Remarkably,

in [7] they found that a double copy relation can be found for spacetimes having a Kerr-Schild

representation of the metric (see §2.2). More recent work on classical double copy theory has

been motivated by the study of the double copy of massive gauge theories in the high-energy

limit [21].

These massive gauge theories are of interest for several reasons. The most relevant of these

for this work is highlighted by the findings of [21], whose results suggest that there may be

a topologically massive double copy at all loop orders. More generally, the massive Yang-

Mills amplitudes double copy to de Rham-Gabadadze-Tolley (dRGT) massive gravity in four

dimensions [21, 22]. In particular, it is noted in [21, 23] that this makes use of a special choice
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of Wilson coefficients 4-point amplitudes, and also that the 5-point amplitude double copy

suffers from spurious poles, avoidable by making use of the spectral condition [21, 23]. One

can avoid the necessity for the spectral condition when considering the 5-point amplitudes by

working with the massive double copy in three dimensions, provided the Yang-Mills amplitudes

satisfy just one BCJ relation – as opposed to four BCJ relations in the massless case [21, 24].

Furthermore, a result relevant to this work is that it has been shown that topologically massive

Yang-Mills (see §3.2) amplitudes double copy to topologically massive gravitational scattering

amplitudes [21, 24, 25]. The inclusion of matter into these topologically massive theories has

also been considered with varying degrees of success [26–28].

This work will consider many of the aspects of the classical double copy, with the goal

of discussing the time-dependent solutions of topologically massive gravity and their relation

to topologically massive Yang-Mills theory, as well as massive biadjoint scalar theory. The

motivation for this is based on the aforementioned scattering amplitude results that indicate

that the double copy of these topologically massive theories may hold to all loop orders [21],

and is further justified by the previously discussed links between scattering amplitudes as the

classical double copy [20]. To achieve this in a coherent way, this thesis is structured as follows:

§2 briefly discusses the BCJ double copy before introducing the classical double copy and many

of the known results in the literature; §3 considers topologically massive theories, intended to

provide a reader new to the material with a basic understanding of these theories before, finally,

showing that the classical double copy of topologically massive gravity reproduces certain time-

dependent equations of motion of topologically massive Yang-Mills theory (the single copy) and

of biadjoint scalar theory (the zeroth copy) – plane wave and shockwave solutions in particular;

§4 contains a conclusion and potential avenues for future work. Appendices are included for

completeness and should be utilised as necessary.
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2 Overview of Basic Double Copy Theory

We introduce double copy theory in the more conventional context of (typically) 4-dimensional

theories. We reserve the primary discussion of 3-dimensional topologically massive theories for

later discussion in §3, as this will be accompanied by some additional considerations to those

presented in this section.

2.1 The BCJ Double Copy

The idea of classical double copy theory would likely not exist were it not for the scattering

amplitude programme of double copy theory. Hence, we briefly introduce the BCJ double copy

in order to better understand the origins of classical double copy theory, as well as to provide

some context for the double copy as a more general idea than it may be represented for the

majority of this work. This discussion will not be thorough, but rather an exercise in ‘hand-

waving’ in order to expediently arrive at the essential results, but the references herein provide

a fuller perspective when/where it may be desired.

The BCJ double copy is based on the CK duality, which BCJ originally proposed in [5].

The key finding is that, for Yang-Mills theory7, the colour factors and the kinematic factors

satisfy the same algebra – implying that they satisfy the same Jacobi identity and have the same

symmetry properties [11]. The usefulness of this becomes more apparent when one considers

that, in Yang-Mills theory, for a full colour-dressed n-point amplitude8, one may always factorise

the amplitude in terms of cubic vertices/graphs/diagrams [1, 8, 11]. Critically, the l-loop n-point

scattering amplitude in d-dimensions may be expressed as [1, 11]

Al
n = il−1gn−2+2l

∑
G∈G3

∫ dd·lq

(2π)d·l
1
SG

C(G)N(G)
D(G) (2.1)

where g is the coupling constant, the sum is over cubic graphs, G3, and C(G), N(G), SG and

D(G) are the colour factor, kinematic factor, symmetry factor and denominator, respectively.

The denominator is a product of the denominators of the Feynman propagators of each of the
7CK duality is intended to be a more general statement that is not necessarily limited to Yang-Mills theory,

and instead is encapsulated by the general idea that one may organise a perturbative expansion such that there
exists a bijective map between (a) colour factor Lie-algebra identities that are associated to certain Feynman
diagrams, and (b) the kinematic numerators of those same diagrams [11]. However, this generality is not necessary
for the basic discussion we present here.

8While attempts have been made to also understand CK duality at the level of the Lagrangian, it remains
poorly understood, and we do not discuss it here. One may refer to e.g. [9, 29] for further discussion on this
point.
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internal lines of the diagram so will be proportional to (p2 − m2
i ) where mi is the mass of the

propagator. The measure, dd·lq = ∏l
n=1 ddqn, is over the loop momenta, qn. The factorisation of

the numerator into a group-theoretic colour factor – C(G), which is a polynomial of the structure

constants, fabc – and a kinematic factor – N(G), composed of Lorentz-invariant contractions of

polarisation vectors and momenta – is the essential observation to be made from the form of

(2.1) [8]. In the case where a non-cubic vertex is present, one multiplies by a factor of 1 in the

form of (p2 −m2
i )/(p2 −m2

i ) – N(G) factor gains a new factor in its product, and similarly for

D(G) [1].

A useful tree-level example is of 2-2 scattering (4-point amplitude) is [8]

Atree
4 =

1

2

4

3

+

1

2

4

3

+

1

2

4

3

= CsNs

s
+ CtNt

t
+ CuNu

u
, (2.2)

where it should be understood that the lines in the above diagrams are the same as the curly

gluon lines in the diagrammatic relation in (1.5), but we have represented these as lines above to

prevent the diagrams (especially the u-channel diagram) from being unintelligible. The colour

factors are

Cs ≡ 2fa1a2bf ba3a4 , Ct ≡ 2fa1a3bf ba4a2 , Cu ≡ 2fa1a4bf ba2a3 (2.3)

where the ai are indexed by the leg of the diagram to which they belong to and the b comes from

the propagator between vertices. One can notice now that Cs + Ct + Cu = 0 (which is simply

an expression of the Jacobi identity) which does not fix the numerators in (2.2). In fact, there

are a set of transformations called generalized gauge transformations that leave the amplitude

in (2.2) invariant for any set of trivalent diagrams whose colour factors obey a Jacobi identity

[5, 8]

Ci + Cj + Ck = 0, (2.4)

where the kinematic numerators may then transform as

Ni → Ni +Di∆, Nj → Nj +Dj∆, Nk → Nk +Dk∆, (2.5)

where ∆ is some arbitrary function, and where the Dσ are the propagators that appear uniquely

in the σ diagram, otherwise termed ‘unshared’ propagators. The CK duality is then realised
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by the statement that there exists a generalised gauge choice for the Nσ, the colour-dual gauge,

such that the kinematic factors obey the same algebra as the colour factors [1, 5, 8, 11]

Ci = −Cj ⇐⇒ Ni = −Nj

Ci + Cj + Ck = 0 ⇐⇒ Ni +Nj +Nk = 0.
(2.6)

An interesting implication of the CK duality is manifested in a new set of relations between

n-point colour-ordered amplitudes, known as (fundamental) BCJ relations [1, 5, 8]

n∑
i=3

(
i∑

j=3
s2j

)
An[1, 3, ..., i, 2, i+ 1, ..., n] = 0, (2.7)

where we use as notation for the Mandelstam variable s2j = (p2 · pj)2.

The most relevant implication that CK duality has, with respect to this work, is that once

one has successfully found a generalised gauge transformation to the colour-dual gauge, then

one may write the n-point l-loop amplitude with the replacement C(G) → N(G) in (2.1) [5,

8, 11]. The BCJ double copy relation is the statement that we may use this formula to find a

gravitational scattering amplitude with certain substitutions [8, 11]. To make this statement

precise (and closely following [11]), suppose we have two distinct l-loop n-point amplitudes, Al
n

and Ãl
n, each in the form of (2.1). Additionally, let these amplitudes have the same colour

factors, and allow for the kinematic factors to be different (N(G) and Ñ(G)). If we assume

that at least one of the amplitudes, say Ãl
n, exhibits CK duality then we may replace the colour

factors of the other amplitude with the kinematic factors of Ãl
n. Then we may obtain an n-point

l-loop gravitational scattering amplitude [5, 6, 8, 11]

Ml
n = Al

n

∣∣∣ C→Ñ

g→κ/2
= il−1

(
κ

2

)n−2+2l ∑
G∈G3

∫ dd·lq

(2π)d·l
1
SG

N(G)Ñ(G)
D(G) , (2.8)

known as the BCJ double copy relation.

We conclude our overview of the BCJ double copy at this point. There is much more that

can be said, but this would not provide much useful insight for the sections that follow. However,

the references cited above provide more detailed discussions. In particular, the reader is pointed

to any of [1, 8, 11] for an excellent introduction to double copy theory as a whole.
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2.2 The Classical Double Copy

It is natural to consider what, if any, of the features of (inherently quantum) double copy theory

may be observed in the classical case. It has been found that there are relationships that carry

through to the level of classical description, provided there is a Kerr-Schild description of the

(gravitational) metric [7]. That is, the metric can be expressed as [11, 21, 30–32],

gµν = ηµν + κϕkµkν , (2.9)

where κ is some constant, ϕ is a scalar function, and the covector kµ satisfies

gµνkµkν = 0 = ηµνkµkν , (2.10)

that is, kµ is null with respect to the full metric (gµν) and the flat (Minkowski) metric (ηµν).

As well as the null condition, kµ is also geodetic [11, 21], so

(k · ∇)kµ = 0. (2.11)

Enforcing gµνg
νρ = δρ

µ (and using this for ηµν , too) one finds that ηµν = gµν trivially satisfies

this condition, however, a more general solution for gµν is found by considering

gµνg
νρ = (ηµν + κϕkµkν)(ηνρ − κϕηναkαη

ρβkβ)

= δρ
µ − κϕδα

µkαη
ρβkβ + κϕkµkνη

νρ − κ2ϕ2kµ(kνη
ναkα)ηρβkβ

= δν
µ + κϕ(kµk

ρ − kµk
ρ)

= δρ
µ =⇒ gµν = ηµν − κkµkνϕ,

(2.12)

where in the first line we have emphasized that the indices on kµ are raised using the Minkowski

metric9, and in the second line we used the null property of kµ. At this point, we re-emphasise

that we will principally be concerned with the 3-dimensional case, however, in this section cal-

culations are performed on a 4-dimensional manifold, as this is more familiar and better suited

to the purpose of introducing the material.
9In order to make it clear which upper-indexed objects have had their indices raised with the full inverse

metric, gµν , we will adopt the convention (suggested by M. Carrillo Gonzalez) that objects whose indices have
been raised by the full metric will be written with a ‘bar’ above them; e.g. gµνkν = k̄µ.
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Assuming that a Kerr-Schild form of the metric exists, we can make use of its properties to find

the form of the Ricci tensor and Ricci scalar (and therefore the Einstein Tensor). To do this,

let

hµν ≡ ϕkµkν =⇒ gµν = ηµν + κhµν . (2.13)

We will treat hµν as a ‘perturbation’ about the Minkowski metric. Of course, the hµν is not a

perturbation, but it is trivial that (hµν)2 ≡ h α
µ hαν = 0, since hµν acquires its indices from the

null vector kµ, so any contraction of indices in hµν (or contracted product thereof) is vanishing.

Thus, we can simply contract any ‘perturbative’ expansion to first order in hµν and the result

is exact. Solving for the first order form of the Ricci tensor, one finds10,

gµαRαν = R̄µ
ν

= R[η]µν − 1
2κ(2hµαR[η]να + hµ

ν
;β

;β − h β
ν

;µ
;β − hµβ

;ν;β + hβ
β

;µ
;ν )

(2.14)

where we have let κ behave as a ‘perturbation’ parameter for hµν , and R[η]µν is the Ricci tensor

associated to the ‘unperturbed’ (Minkowski) metric. Numerous terms now vanish: any R[η]µν

etc, will vanish since M4 (Minkowski 4-space) is Ricci-flat; any internal contraction in h = hα
α

etc, is zero since kα is null. Removing these terms, contracting indices, and noting that the

covariant derivatives reduce to partial derivatives in flat space, we find,

R̄µ
ν = −κ

2
[
∂2(hµ

ν ) − ∂µ∂β(hβ
ν ) − ∂ν∂β(hµβ )

]
, (2.15)

in agreement with [35]. Using the same idea, we could calculate the Ricci scalar, however this

is calculation is simply the trace over R̄µ
ν ,

R̄µ
µ = −κ

2
[

− ∂µ∂β(hβ
µ) − ∂µ∂β(hµβ)

]
= κ∂µ∂β(hµβ),

(2.16)

10Use of the xAct (tensor computational algebra) package in Mathematica was used to expand the results [33,
34].
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where we have, again, used the properties of kµ to simplify (2.16), and we may now deduce the

form of the Einstein tensor

Ḡµ
ν := R̄µ

ν − 1
2δ

µ
ν R̄

= −κ

2
[
∂2(hµ

ν ) − ∂µ∂β(hβ
ν ) − ∂ν∂β(hµβ ) + δµ

ν ∂
α∂β(hαβ)

]
.

(2.17)

Another quantity that will be useful in later discussions is the Cotton tensor, Cµν ; the 3-

dimensional analogue of the Weyl tensor (that is, it is invariant under conformal transformations

and is, therefore, zero for conformally-flat spacetimes), defined as

Cµν := εµαβ∇α(Rν
β − 1

4g
ν
βR), (2.18)

where εµαβ is the Levi-Civita symbol and ∇α is the covariant derivative. This will be relevant

for §3.3 in particular.

2.3 The Single and Zeroth Copies

Before demonstrating that the double copy does reproduce the results of the so-called single

and zeroth copy, it is important to understand what it is that we hope to reproduce. We expect

that the double copy we find in our classical Kerr-Schild gravity solution should have equations

of motion that correspond to the equations of motion of linearised Yang-Mills theory and of

linearised biadjoint scalar theory, respectively. This should not be surprising – as we saw in 2.2,

a Kerr-Schild form of the metric linearises gravity. The linearised Yang-Mills and linearised

biadjoint scalar theories are briefly introduced in this section.

2.3.1 Biadjoint Scalar Theory or The Zeroth Copy

Biadjoint scalar theory is described by the Lagrangian [27]

LBAS = 1
2∂µΦaã∂µΦaã − 1

3!f
abcf ãb̃c̃ΦaãΦbb̃Φcc̃ + 1

2m
2ΦaãΦaã + gΦaãJaã, (2.19)

where g is a coupling constant, fabc (f ãb̃c̃) are the structure constants of the (potentially distinct)

Lie algebras generated by T a (T ã)

[T a, T b] = ifabcT c (similarly for T ã). (2.20)
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It is important to note that the mass term in (2.19) will not be present for the 4-dimensional the-

ories we consider, however it will be present in the 3-dimensional case. One can note [27, 36] that

this result can be gauged by minimal coupling, sometimes referred to as Yang-Mills+Biadjoint

Scalar (YM+BAS) theory, (∂µΦaã → Dµ = ∂µΦaã + fabcAb
µΦcã, where Dµ is the covariant

derivative based on gauging one of the Lie algebra components) [27], however, as we will only

be concerned with the linearised theory we spare ourselves the additional complication of gaug-

ing this theory. The equations of motion of the (full, not necessarily linear) theory are

∂2Φaã + 1
2f

abcf ãb̃c̃Φbb̃Φcc̃ −m2Φaã = gJaã, (2.21)

where the difference between this and the gauged equations of motion is simply the replacement

Dµ ↔ ∂µ. Linearising this theory is done by applying the separation of the scalar field from its

Lie algebra indices by choosing

Φaã ≡ cacãΦ, Jaã ≡ cacãJ , (2.22)

where the ca and cã are constant colour factors indexed by the Lie algebra generator for which

they are coefficients, and potentially coming from distinct Lie algebras. In the gauged scenario

this would also require the choice Aa
µ ≡ caAµ. Applying this linearisation to the equations of

motion (2.21) we find

∂2Φaã −m2Φaã = gJaã,

⇒ cacã
(
∂2Φ −m2Φ

)
= cacãgJ ,

(2.23)

(the same is true for the gauge equations of motion) where we have used that cacb is symmetric

and fabc is antisymmetric to remove the second term of (2.21) (and in the gauged case this also

causes the covariant derivative to reduce to a partial derivative). Equation (2.23) will be what

we hope to recover as the zeroth copy from the gravity theory.
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2.3.2 Yang-Mills Theory or The Single Copy

We now repeat the process of the previous section, this time for Yang-Mills theory. Yang-Mills

theory is described by the Lagrangian (in component form)

LYM = −1
4F

a
µνF

aµν + gAaµJa
µ , (2.24)

where a is the index of the Lie algebra, g is the coupling constant, and the field strength F a
µν is

defined by11

F a
µν = ∂µA

a
ν − ∂νA

a
µ + ifabcAb

µA
c
ν . (2.25)

The well known equations of motion of (2.24) are given by [21, 27]

DαF
αµ = gJµ, (2.26)

where the covariant derivative is Dµ = ∂µ + [Aµ, ·]. Linearising the equation of motion means

making use of the separation of the gauge vector field as

Aa
µ ≡ caAµ, (2.27)

where, as before, the ca are constant colour factors whose index is associated to the Lie algebra.

With this separation, the equation of motion are reduced to

ca∂αFαµ = cagJµ , (2.28)

where Fαµ := ∂αAµ − ∂µAα. One should note that this is just an algebra-indexed form of the

sourced Maxwell equations. Equation (2.28) is the equation of motion for the single copy that

we expect our gravity theory will reproduce.

2.4 Stationary Kerr-Schild Solutions

Restricting the analysis to the stationary case (where time derivates are all vanishing) we can

simplify the expressions in (2.15) and get an overview of the (stationary) Ricci tensor’s structure
11As §3 is of primary interest in this work, it provides a more thorough examination of the Lie algebra. Yang-

Mills theory is also discussed in many textbooks and articles. The reader is directed to, e.g. [37] for additional
details, although it is noted that conventions for where one inserts the coupling constant g are different.
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after expanding hµ
ν in terms of the scalar field ϕ and the null vector(s) kµ, where we additionally

assume that all the functional dependence of k0 is absorbed into the scalar field and set k0 = 1,

without loss of generality, as was done in [38], such that kµ = (1, k̂) where k̂ is a unit spatial

vector so that kµ remains null, thus

R̄0
0 = κ

2∂
2
i ϕ, (2.29)

R̄i
0 = −κ

2∂j
[
∂i(ϕkj) − ∂j(ϕki)

]
, (2.30)

R̄i
j = −κ

2∂l

[
∂l(ϕkikj) − ∂i(ϕklkj) − ∂j(ϕkikl)

]
, (2.31)

and using the same assumptions in (2.16)

R̄ = κ∂i∂j(ϕkikj), (2.32)

all of which agree with the results (up to factors of κ) found in [7] and [21].

Now, the key step in the case of classical double copy theory is appropriately identifying

a vector field that will produce Maxwell’s equations. The conventional identification for the

vector field that we make is taken from [21] as

Aa
µ ≡ caAµ := caϕkµ, (2.33)

which is known as the Kerr-Schild ansatz and is also referred to in the literature as the single

copy, and where the ca are constant colour factors. The superscript index a is used in generalising

to non-Abelian gauge vector fields, however in the example calculation we have thus far we are

considering an Abelian case and so there is no need for this index, and we can simply absorb

the single c into ϕ (such that Aµ = ϕkµ for this discussion). Restricting to the (stationary)

Ricci-flat case (R̄µν = 0) we can re-cast (2.29) and (2.30) in terms of the vector field as

R̄µ
0 = 0 = −κ

2∂ν
[
∂µ(ϕkν) − ∂ν(ϕkµ)

]
= −κ

2∂ν
[
∂µAν − ∂νAµ]

= −κ

2∂νF
µν

⇒ 0 = ∂νF
νµ,

(2.34)
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where we have used the conventional (Abelian) electromagnetic field tensor F νµ = ∂νAµ−∂µAν .

Thus, we recover Maxwell’s vacuum equations with this identification of the vector field.

Of course, we would like the analogy to hold in the case where there is a non-zero energy-

momentum tensor, that is, for situations more general than that of the vacuum Einstein equa-

tions. To do this, we start from the non-vacuum Einstein equations

Gµν := Rµν − 1
2gµνR = κ2

2 Tµν

⇒ 2R− nR = κ2T

⇒ R = − κ2

(n− 2)T,

(2.35)

where we have implicitly acted with gµν on the second equation to find the third, assuming

an n-dimensional spacetime. Using this relationship between the Ricci scalar and the trace of

the energy-momentum tensor, we can write the Ricci tensor in terms of the energy-momentum

tensor and the trace of the energy-momentum tensor, called the trace-reversed equations of

motion

Rµν = κ2

2
(
Tµν − 1

2gµνT
)
. (2.36)

Working with the Ricci tensor (2.15) in its Kerr-Schild form, and applying the Kerr-Schild

ansatz, one finds

−2R̄µ
ν = κ

[
(∂αF

αµ)kν +Xµ
ν

]
, where

Xµ
ν = Aµ(∂2kν) − (∂αA

α)(∂µkν) − (∂ν∂αA
µ)kα

+ (∂αA
µ)(∂νk

α) − (∂νA
µ)(∂αk

α) −Aµ(∂ν∂αk
α)

(2.37)

where again we use (2.29) and (2.30), in particular. We can now make use of a timelike Killing

vector, V ν , where k · V = 1 (given the previous choice of kµ = (1, k̂), by specifying that V µ is

timelike k · V = 1 ⇒ Vµ = (1,0), where 0 is the zero 3-vector). This choice of Killing vector,

in conjunction with the form of kµ as well as the fact that we are assuming stationarity, means
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that

Xµ
ν V

ν = Xµ
0

= −Aµ(∂2k0) − (∂αA
α)(∂µk0) − (∂0∂αA

µ)kα

− (∂αA
µ)(∂0k

β) − (∂0A
µ)(∂αk

α) −Aµ(∂0∂αk
α)

= 0,

(2.38)

and therefore we can use Xµ
ν V

ν = 0, to contract (2.37)

− 2R̄µ
νV

ν = −2R̄µ
0 = κ∂α(Fαµ)kνV

ν = −κ2
(
T̄µ

ν − 1
2Tδ

µ
ν

)
V ν

⇒ ∂αF
αµ = gJµ := − κ

k · V

(
T̄µ

ν − 1
2Tδ

µ
ν

)
V ν

⇒ ∂αF
αµ = −κ

(
T̄µ

0 − 1
2Tδ

µ
0

)
,

(2.39)

and hence we arrive at Maxwell’s (Abelian) sourced equations, and it is trivially noted that

inclusion of a factor of ca on either side of the equation reproduces the result (2.28) from the

linearised Yang-Mills theory. If we use the same ‘Killing vector trick’ (with Vµ) again, we will

be left only with the R̄0
0 equation,

−2R̄0
0 = −2R̄µ

νV
νVµ

= κ∂αF
αµVµ

= ∂α(∂αkµϕ− ∂µkαϕ)Vµ

= ∂2ϕ

⇒ ∂2ϕ = ρ := κ

2 T̄
0
0 ,

(2.40)

which is the expression that relates to the zeroth copy; a relationship that provides a link

between biadjoint scalar theory, where, in this instance, the ansatz chosen is [21]

ϕaã ≡ cacãϕ, (2.41)

where the indices a, ã are two Lie-algebra indices (that are not necessarily the same Lie-algebra).

As with the linearised Yang-Mills case, we now have an expression that matches the results for

the biadjoint scalar theory (in four dimensions, so m = 0) provided one multiplies both sides of
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the equation with two constant colour factors, cacã.

Theory\Result Single Copy/LYM-EOM Zeroth Copy/LBAS-EOM

Gravity ca∂αF
αµ = −caκ

(
T̄µ

0 − 1
2Tδ

µ
0

)
cacã∂2ϕ = κ

2 T̄
0
0

LYM/LBAS ca∂αFαµ = cagJµ cacã∂2Φ = cacãgJ

Table 2: Table showing a summary of the results for the Schwarzchild black hole double copy.
In particular, we show the equations of motion of each (linearised) theory and the analogous
‘copied’ results from gravity. We have left the sources of gravity untransformed to make the
relationship between the sources manifest.

Before we proceed, we briefly reflect on a potentially insidious subtlety that occurs when

performing these calculations (and appears to only be mentioned in [39]). Recall, in the above

(static solution) derivations, we chose kµ = (1, k̂). This choice seems a valid one – it is trivial

to see that any Kerr-Schild metric (2.9) is invariant under

kµ → fkµ, ϕ → ϕ/f2, (2.42)

where f is some arbitrary function of the spacetime coordinates. Imposing the geodetic property

(2.11) partially restricts the form of f but does not determine f . Since the metric is invariant

against such transformations, so too are the Riemann curvature tensor, the Ricci tensor and

the Ricci scalar. However, despite the fact that the gravitational theory is ‘well-behaved’ under

transformations (2.42), the same cannot be said of the single and zeroth copies that follow

from the particular choice12 of f . Critically, we would like the double copy to reproduce single

and zeroth copy results in an intuitive way – (un)sourced equations of motion in gravitational

theories should be related to (un)sourced equations of motion in both the gauge theory and

scalar field theory. To that end, one finds that there are two predominant choices that can be

made as a general recipe for doing classical double copy theory [39]:

• Stationary Solutions Choice:

As was done to simplify (2.37); choose k · V such that the single copy satisfies Maxwell’s

equations of motion; this determines f .

• Time-Dependent (Wave) Solutions Choice:

As will be shown in §2.6; enforce ∇µkν = 0 and work in light-cone coordinates. Notably,
12See, in particular, [39] §IV for further elucidation of this point.

22



this does not completely remove freedom in one’s choice of f , however it does restrict it to

being dependent on u = t − z (see §2.6). Interestingly, when one generalises to a curved

base space (gµν = g̃µν + κϕkµkν) there does not appear to be a choice of k · V such that

the gauge symmetry is not broken – it is found that there is non-minimal coupling to the

curved base space [39].

The choices above are those that will be used hereafter in this work, with the only notable

exception being §2.5, which follows an altogether different approach, distinct from the compu-

tational/derivational method than that used in the rest of this thesis.

2.5 Self-Dual Solutions

An interesting example, that makes use of a slightly different approach, is that of the self-dual

Yang-Mills equations of motion

Fµν = i

2εµνρσF
ρσ, (2.43)

which can be obtained as the single copy of 4-dimensional Kerr-Schild-like metrics in light-cone

coordinates (we include this only for interest’s sake, and a more thorough discussion can be

found in [40], whose calculations we follow in this discussion) for self-dual gravitational theories

Rµνρσ = i

2εµναβR
αβ

ρσ . (2.44)

Thus far, we have been using kµ as some function of spacetime coordinates in position space;

we can suppose that the Kerr-Schild form of the metric exists in momentum space as well,

where kµ is replaced by a differential operator, k̂µ, when written in position space13. Then the

Kerr-Schild form of the metric takes on a slightly modified form

gµν = ηµν + κk̂µk̂ν(ϕ) =: ηµν + κhµν , (2.45)

where the k̂µ’s are commuting14 (arbitrary) linear differential operators, of the form k̂µ = A ν
µ ∂ν ,

for A a constant matrix, that act on the scalar field ϕ. We apply the same restrictions as [7],

namely:
13Note this k̂ is a differential operator whereas in an earlier discussion k̂ was used to denote a unit spatial

vector.
14The differential operators must commute in order for the metric to remain symmetric.
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1. We do not consider a double copy with a dilaton ⇒ tr(hµν) = 0.

2. Relating to the previous condition, tr(hµν) ∝ ηµν k̂µk̂ν(ϕ) ⇒ ηµν k̂µk̂ν(ϕ) = 0.

3. We assume ηµν k̂µ(ϕ)k̂ν(φ) = 0.

These conditions mean that the inverse metric is of an identical form to (2.12), with k → k̂

and these act on ϕ instead of multiplying with it. In particular, we consider a 4-dimensional

spacetime in light-cone coordinates

u = t− z, v = t+ z, w = x+ iy, w∗ = x− iy, (2.46)

such that

ds2 = −dt2 + dx2 + dy2 + dz2

= −d(t− z) d(t+ z) + d(x+ iy) d(x− iy)

= −du dv + dw dw∗,

(2.47)

is the Minkowski line element in these coordinates. An “inspired” [40] choice15 for the values of

our k̂’s are

k̂u = 0, k̂v = 1
4∂w, k̂w = 0, k̂w∗ = 1

4∂u, (2.48)

whereafter, using (2.47) and (2.48) to infer the light-cone metric structure it becomes apparent

that k̂µ∂
µ = −1

4∂w∂u + 1
4∂u∂w ≡ 0. The Christoffel symbols are (using xAct and treating hµν

as a perturbation once again [34])

Γρ
µν = 1

2κ
(
h ρ

ν ,µ + κhρα(hµν,α − hνα,µ − hµα,ν) + h ρ
µ ,ν − h ,ρ

µν

)
= 1

2κ
(
h ρ

ν ,µ + κhραhµν,α + h ρ
µ ,ν − h ,ρ

µν

)
= κ

2
(
∂µk̂ν k̂

ρ(ϕ) + ∂ν k̂µk̂
ρ(ϕ) − ∂ρk̂µk̂ν(ϕ) + κ(k̂ρk̂α(ϕ))(∂αk̂µk̂ν(ϕ))

)
,

(2.49)

15This choice is not as random as it appears at first glance, and comes about from considering a self-dual
Yang-Mills equations in Minkowski spacetime, Fµν = i

2εµναβF
αβ , with complexified gauge field Aµ, where

Fµν = ∂µAν − ∂νAν − ig[Aµ, Aν ] is the Yang-Mills field strength tensor and [T a, T b] = ifabcT c defines the
Lie algebra. In the light-cone gauge Au = 0 and the self-dual Yang-Mills equations suggest that Aw = 0,
Av = 1

4∂wΦ, and Aw∗ = − 1
4∂uΦ, where Φ is a Lie-algebra valued scalar field. See [40] for an explicit and

thorough discussion of the analogy between the self-dual Yang Mills equations and the self-dual gravity equations,
Rµνρσ = i

2εµναβR
αβ

ρσ , although the sign conventions in this work are different from those used in [40].
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where we have used the third restriction (ηµν k̂µ(ϕ)k̂ν(φ) = 0) to simplify the result in going

from the first to the second line, all indices on the right are raised using the Minkowski metric,

and the result agrees with that found in [7]. We can substitute this result into the definition of

the Riemann curvature tensor and trace over this to find the Ricci curvature tensor as

Rµν = κ

2
[

− ∂2hµν + κ
(
(∂α∂βhµν)hαβ − (∂αhµβ)(∂βhαν)

)]
= κ

2
[

− ∂2k̂µk̂νϕ+ κ
(
(∂α∂β k̂µk̂νϕ)(k̂αk̂βϕ) − (∂αk̂µk̂βϕ)(∂β k̂αk̂νϕ)

)]
,

(2.50)

where extensive use of the restrictions has been made, and from which it is apparent that a trace

over the Ricci tensor (to find the Ricci scalar) is clearly zero. Einstein’s equations in vacuum

thus read Rµν = 0. Given the choice of light-cone coordinates, we know the precise form of hµν ,

and the non-vanishing components are

hvv = 1
16∂

2
wϕ, hw∗w∗ = 1

16∂
2
uϕ, hvw∗ = hw∗v = 1

16∂u∂wϕ. (2.51)

Using these values in conjunction with the self-dual gravity equations (2.44) as well as the first

line of (2.50), we find that the vacuum Einstein equations may be reduced to

0 = ∂2ϕ− κ

16
(
(∂2

uϕ)(∂2
wϕ) − (∂u∂wϕ)2

)
= ∂2ϕ− κ

2 (∂µ∂νϕ)(hµν)

= ∂2ϕ− κ

2 {∂wϕ, ∂uϕ},

(2.52)

which is a single equation for the scalar function, ϕ – a result first derived by Plebanski [41] –

and we have defined the Poisson brackets as

{a, b} := (∂wa)(∂ub) − (∂wb)(∂ua). (2.53)

The final line of (2.52) has a parallel with the result for the self-dual Yang-Mills equations

of motion (in Minkowski spacetime using light-cone coordinates) for the gauge field with the

modified Kerr-Schild ansatz Aa
µ = k̂µϕ

a, and writing Φ = ϕaT a, [40]

k̂µ

(
∂2Φ + ig[∂wΦ, ∂uΦ]

)
= 0. (2.54)
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Thus, we see that, up to the change of {·, ·} → [·, ·], the self-dual Yang-Mills solution (2.54) is

captured by the self-dual gravity relation (2.52).

For further, in-depth discussion of the relationship between self-dual Gravity and self-dual

Yang-Mills, and for a derivation of the solutions for ϕ we direct the reader to [40]. We do not

extend the discussion further, as this relationship between self-dual Yang-Mills and self-dual

gravity is an example that is quite distinct from the rest of this work.

Theory\Result Defining Equations DE[ϕ]

SDYM Fµν = i
2εµναβF

αβ ∂2Φ + ig[∂wΦ, ∂uΦ] = 0

SDG Rµνρσ = i
2εµναβR

αβ
ρσ ∂2ϕ− κ

2 {∂wϕ, ∂uϕ} = 0

Table 3: Table showing a summary of the results for the self-dual double copy. In particular,
we show the defining equations of each theory and the associated differential equations (DE)
for the scalar fields for each theory in the light-cone coordinates described in the text.

2.5.1 Schwarzchild Black Holes

The simplest example of a sourced time-independent classical double copy relation is found

when considering a static, pointlike (Dirac-delta) source in a spherically symmetric space. The

Schwarzchild solution [42] is the most general of these spacetimes, and, by Birkhoff’s theorem

[43], we know it is time-independent and asymptotically flat – as r → ∞ one finds gµν → ηµν .

Most individuals are introduced to the Schwarzchild metric in a form that makes the

Schwarzchild radius, rs = 2GM , and the spherical symmetry manifest in Schwarzchild co-

ordinates (t, r, θ, φ) via the line element expression [44]

ds2 = −
(
1 − 2GM

r

)
dt2 +

(
1 − 2GM

r

)−1
dr2 + r2dΩ2

2, (2.55)

where t is time, r is the (spatial) radial distance from the origin, θ and ϕ are the usual spherical

coordinates, dΩ2
2 = dθ2+sin2(θ)dφ2 is the metric on the unit-radius 2-sphere, M is the mass, and

G ≡ G(4) is Newton’s gravitational constant in four dimensions. To make use of our calculations

at the start of §2.4, however, we must express the Schwarzchild metric in Kerr-Schild form. This
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is a known result [7]

gµν = ηµν + 2GM
r

kµkν , where

kµ =
(
1, x

i

r

)
; r2 = xix

i, i = 1, 2, 3.
(2.56)

For the pointlike source we choose

Tµν = Mvµvνδ(3)(x), (2.57)

where M we choose the pure timelike vµ = (1, 0, 0, 0). Using that κ2 = 16πG, the form of the

graviton in (2.13), and the Kerr-Schild form of the Schwarzchild metric in (2.56), we may infer

the form of the scalar field
2GM
r

= κϕ ⇒ ϕ
!= κM

8πr . (2.58)

This form of ϕ is slightly inconvenient for our purposes, and so we make use of the normalisation

suggested in [7], which amounts to redefining (for this discussion only)

gµν = ηµν + κhµν , hµν = κ

2ϕkµkν
(2.58)=⇒ ϕ = M

4πr . (2.59)

Then applying the Kerr-Schild ansatz (2.33) and κ/2 → g one finds

Aµ = g
M

4πr
(
1, x
r

)
. (2.60)

If one additionally makes the transformation M → caT a where ca is a constant colour charge

and T a is the associated Lie algebra generator, then one readily obtains

Aµ = caT a g

4πr
(
1, x
r

)
. (2.61)

The latter transformation identifies mass ‘charge’ in gravity with colour charge in the gauge

theory. Relating this to our earlier discussions, consider now substituting the solution (2.61)

into the boxed equation in (2.39) – we still need to compute the source term, gJµ, which we

find by computing the right-hand side of (2.39). First, note that the vµ chosen for (2.57) may

be identified with the V µ used in deriving (2.39); v · k = 1 and vµ is a timelike Killing vector

for Schwarzchild spacetime, so we may use it without fear of contradiction in the results of the
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derivation. Then substituting in the form of (2.57) and performing all the transformations used

in producing (2.61), namely

κ

2 → g, ϕkµ → Aµ, M → caT a, (2.62)

we find, for the single copy

∂αF
αµ = gJµ, Jµ = −caT avµδ(3)(x). (2.63)

The result precisely describes a point (colour) source spatially fixed at the origin and unchanging

in time (since vµ = (1,0)), however the form of the gauge field Aµ does not make this entirely

obvious.

A gauge transformation of the field Aa
µ provides greater insight into the solution, and we will

use the gauge transformation described in [7], which notes that the equations of motion found

are those of sourced Maxwell equations, so a valid gauge transformation to consider would be

[7]

Aa
µ → Aa

µ+∂µχ
a(x), χa(x) = χa(r) = −g c

a

4π log(r/r0)

⇒ Aµ =
(
g
caT a

4πr , 0, 0, 0
)
,

(2.64)

where we have introduced a length scale r0 to ensure the object in the logarithm is dimensionless.

That this is the Coulomb solution for static (colour) charge is now apparent – that it is the

electromagnetic Coulomb solution is verified by a trivial substitution caT a → Q, where Q is the

charge of the source.

If one chose to evaluate the zeroth copy, following (2.40), one would find the sourced Poisson

equation solution

∂2ϕ = ρ, ρ = −gcãT ãcaT aδ(3)(x). (2.65)

which is a Poisson equation for a static (since ϕ is independent of t) point (colour) charge density,

and we have used now M → cãT ãcaT a to ensure consistency with the results of biadjoint scalar

theory. Once again, using cãT ãcaT a → Q will produce the equivalent equation for a static point

source charge in Maxwell theory.
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The Schwarzchild double copy example presented in this section having a single copy corre-

sponding to a Coulomb solution(s) should convey the essence of the link between gravity and

gauge theories – from a Schwarzchild black hole solution in gravity, we have found a point charge

solution in linearised Yang-Mills theory and Maxwell theory, as well as the point charge Poisson

equations. Interestingly, these solutions may be extended to higher dimensions, but we do not

investigate these solutions in this work16.

2.5.2 Kerr Black Holes

Motivated by the findings when applying classical double copy theory to the Schwarzchild

solution, one may wish to consider how these results may extend to a slightly more conceptually

complex object such as the Kerr black holes solution. Indeed, the double copy may be used,

naturally with slightly different single and zeroth copies. We use this section to provide a

succinct report of the findings of [7], to further motivate the usefulness of the classical double

copy.

Kerr black holes are normally introduced in the context of the Kerr-Newman family of black

hole solutions (charged and rotating solutions) [45, 46] in Boyer-Lindquist coordinates (t, r, θ, φ)

[47, 48]

ds2 = − ∆ − a2 sin2(θ)
Σ dt2 − 2a sin2(θ)r

2 + a2 − ∆
Σ dtdφ

+ (r2 + a2)2 − ∆a2 sin2(θ)
Σ sin2(θ)dφ2 + Σ

∆dr2 + Σdθ2,

(2.66)

where the conventions used are

Σ = r2 + a2 cos2(θ), ∆ = r2 − 2Mr + a2 + e2, e =
√
Q2 + P 2, (2.67)

and we interpret Q as the electric charge, P as the magnetic charge, and a as the angular

momentum per unit mass. We will focus on the uncharged case (Q,P = 0 ⇒ e = 0).

We revert to our graviton conventions as used before the Schwarzchild discussion (still

maintaining the time dependence of ϕ): hµν = ϕ(r)kµkν . In this case, the Kerr-Schild form of
16See [7] for further discussion of this topic.
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the metric is found by defining [7]

gµν = ηµν + κ
2GMr3

r4 + a2z2kµkν ⇒ ϕ(r, z) = 2GMr3

r4 + a2z2 , where

kµ =
(

1, rx+ ay

r2 + a2 ,
ry − ax

r2 + a2 ,
z

r

)
, and

1 = x2 + y2

r2 + a2 + z2

r2 implicitly defines r.

(2.68)

To make r defined over the full space, we also define [7]

r = 0, for all values (x, y, z) ∈ {x2 + y2 ≤ a2, z = 0}. (2.69)

Note that this solution still has a pure timelike Killing vector V µ = (1, 0, 0, 0), so our previous

discussions are still applicable. Applying the modified Kerr-Schild ansatz

Aa
µ = ca κ

8πϕkµ

κ
2 →g
−→ Aa

µ = ca g

4πϕkµ (2.70)

reproduces the equations of motion in §2.5.1 with non-zero magnetic field contributions. The

source in this case is a disk with a ring singularity at x2 + y2 = a2 [7, 49, 50]. Making use of

the results17 of [7, 49, 50], we make the ‘spheroidal’ coordinate transformation

x =
√
r2 + a2 sin(θ) cos(φ),

y =
√
r2 + a2 sin(θ) sin(φ),

z = r cos(θ),

(2.71)

whereafter the energy-momentum tensor is defined by [7, 49]

Tµν = (ωµων + ζµζν)S(θ, z), where

ωµ = tan(θ)
(
1, 0, 1/(a sin2(θ)), 0

)
ζµ =

(
0, 1/(a cos(θ)), 0, 0

)
, and

S(θ, z) = − M

8π2a cos(θ)δ(z)Θ(a− ρ), ρ = a sin(θ).

(2.72)

The first term in this form of Tµν corresponds to a negative (proper) surface density rotating
17The discussions of the source of the Kerr(-Newman) metric is discussed in depth in [49, 50], and the reader

is directed to these sources for more comprehensive discussion of the topic.
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about the z-axis with superluminal (faster-than-light) velocity, whereas the second term corre-

sponds to a radial pressure term [7, 49]. Now that we now have an energy-momentum tensor

describing an appropriate source, we consider again (2.39). The source term now takes on the

form

Jµ = −caT aδ(z)Θ(a− ρ)sec3(θ)
4πa2

(
1, 0, 1/a, 0

)
, (2.73)

which is the form of a (colour) charge distribution rotating about the z-axis [7]. The equivalent

Maxwell solution is found by again relabelling caT a → Q – although it is emphasized that this

Q is not the same as that appearing in (2.67).

One of the details we have ignored18 in this calculation is the coordinate transformations

(from Boyer-Lindquist → Kerr-Schild → spheroidal). In doing so, we have masked the double

copy structure, especially in the final transformation to spheroidal coordinates. We do not

attempt to alleviate this at present as it constitutes many equations without much gain in

intuition19.

Once again, this solution is generalisable to higher dimensional (Myers-Perry) black holes

[7, 51], although we do not address these solutions here. Instead, we now leave the realm of

static solutions and consider the results of some simple time-dependent solutions.

2.6 Time Dependent Kerr-Schild Solutions

In §2.4 we made use of stationarity to simplify many calculations. We now remove this assump-

tion and discuss two solutions to time-dependent Kerr-Schild systems. All of the analysis in

§2.2 still applies.

2.6.1 Kerr-Schild Plane Wave Solutions

As a first example of a time-dependent Kerr-Schild solution, we consider a Kerr-Schild spacetime

for which there exists a null, covariantly constant vector field kµ,

∇µkν = 0, (2.74)
18As is also done in the presentation of [7].
19In [7] they do offer an alternative way to perceive the double copy structure, however this is not illuminating

without going through the coordinate transformations, so we do not present it here.
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and any spacetimes admitting such a null vector are called plane-fronted gravitational waves with

parallel rays, abbreviated in the literature as pp-waves [32]. Initially, pp-waves were described

by spacetimes having line elements (i.e. metrics) of a form that could be written in Brinkmann

coordinates [32, 52, 53]

ds2 = dx2 + dy2 + 2dudv + 2H(x, y, u)du2, (2.75)

where H(x, y, u) is a scalar function. It is easy to see that this expression is almost identical

to the light-cone coordinate expression of the Minkowski line element with an additional term

(the final term in (2.75)). Thus, if we let

u = 1√
2(z − t), v = 1√

2(t+ z),

kµdxµ = du, κϕ = κϕ(x, y, u) ≡ 2H(x, y, u)

⇒ ds2 = dx2 + dy2 + 2dudv + κϕkµkνdxµdxν ,

(2.76)

then we are able to explicitly write the metric in Kerr-Schild form (2.9). The choice of u as

being oppositely-oriented to conventional light-cone coordinates is useful for direct comparison

of (2.75) and (2.76), however beyond that it is simply inconvenient (especially for comparison

to other works), and so we redefine

u = 1√
2(t− z) ⇒ kµdxµ = −du,

⇒ds2 = dx2 + dy2 − 2dudv + κϕkµkνdxµdxν

(2.77)

We already have the Einstein tensor for a generic Kerr-Schild metric from (2.17), and we can

use that the Brinkmann form of the metric has a Kerr-Schild representation to find the Einstein

tensor and the corresponding vacuum equations of motion. Given the light-cone coordinates

specified above, we know kµ = (0, 1, 0, 0) (recall that we raise the indices on kµ with ηµν
(LC))

where η(LC)µν is the Minkowski metric in the Light-Cone coordinates and ηµν
(LC) = η(LC)µν ,

and where we have ordered the coordinates as rµ = (u, v, x, y). First, notice from (2.16)

that the Ricci scalar is zero since ϕ depends on u and not v, and only h00 is non-zero, and

∂µ = (−∂v,−∂u, ∂x, ∂y) where, again, we have raised the index using ηµν
LC. Thus, the vacuum

Einstein equations reduce to R̄µ
ν = 0. The relevant non-zero components for the calculation of
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the Ricci tensor are

h1
0 = ϕ(u, x, y), h11 = ϕ(u, x, y), (2.78)

the result of which is that only the first term in (2.17) produces a non-zero result, and the

Einstein equations are reduced to (following the preceding discussion) as

Ḡµ
ν = 0, R̄ = 0 EOM=⇒ R̄µ

ν = 0 =⇒ ∂2ϕ = ∂2
jϕ = 0, (2.79)

where j = {x, y}, in agreement with [7, 53]. Independence of ϕ from v means that only the rj

derivatives of ϕ are non-trivial. The solution for the j-coordinates is the familiar

∂2
jϕ(x, y;u) = 0 =⇒ ϕ(x, y;u) = a0(u) exp(±ir̃·p) (2.80)

where r̃ = (0, 0, x, y), a0(u) is a scalar function, and by writing ϕ(x, y;u) we mean that this

result should be considered at a particular value of u. This solution corresponds to a plane-

fronted wave; the ‘plane’ is the xy-plane, the dependence of ϕ on u means that the wave is

propagating at the speed of light, and we may interpret the four vector, pµ, as a momentum

with p2 = 0 (i.e. ϕ is massless). We can now consider the single and zeroth copies of this

result by substituting in our expression for ϕ into the Kerr-Schild ansatz for the gauge field.

Considering (2.39) and (2.40), one trivially sees that the single copy solutions are

Aa
µ = caA0(u)e±ir̃·pkµ (2.81)

where, as before, ca is a constant colour factor, and we use a0 → A0 to indicate that the field the

wave represents has different units. The result corresponds to a (linearised) Yang-Mills plane

wave propagating in the z-direction with polarization vector ϵµ = kµ [54, 55]. The same can be

said of the zeroth copy solution

Φaã = cacãγ0(u)e±ir̃·p. (2.82)

which is just a plane wave in biadjoint scalar theory, and we have transformed A0 → γ0 again

to highlight that the field may have different units. Both (2.81) and (2.82) are solutions to their

respective sourceless equations of motion.
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2.6.2 Kerr-Schild Shockwave

Adding a source does not alter the left-hand side of Einstein’s equations, and we would instead

find the only non-zero equation to be

Ḡ1
0 = κ2

2 T̄
0
1

⇒ −∂2
jϕ = κT̄ 0

1 =: gJ(u, x, y),
(2.83)

where we have defined J to be the source and, since ϕ is only dependent on x, y, and u so too

is the source. The solutions to this equation are dependent on the source. A common form for

the (non-zero components of the) energy-momentum tensor is a δ-function source, discussed in

the following section.

As before, we could have gone about this derivation in a slightly different manner, making

use of the knowledge that in chosen coordinates −∂u is a Killing vector, so that we can write

Vµdxµ = dv, so we have k · V = kµVµ = 1. Then the reduction of the equations is much faster

than before (where we had to consider the various components separately)

Ḡµ
νV

νVµ = κ2

2 T̄
µ
νV

νVµ =⇒ −Ḡ1
0 = −κ2

2 T̄
1
0, (2.84)

and hence yields 2.83 more efficiently.

We now consider a specific form of the source – a point particle moving at the speed of light

represented by a δ-function – that has come to be known as a shockwave solution. The results

were initially found by Aichelburg and Sexl by considering the gravitational field of a massless

particle, and the results stated hereafter in this section are primarily based upon their work

[56]20. We begin by finding the form of hµν , from which we find the form of ϕ.

In [56], the shockwave solution found in their first approach is found using the linearised

approximation to the metric21. We emphasise again that, while the solutions found in this thesis

are, indeed, for a linearised form of the metric, the choice of hµν = ϕkµkν and the null and

geodetic properties of kµ mean that the linear form of the metric is exact (since (hµν)2 = 0). The

set-up of the problem begins by stating that the energy-momentum tensor of a point particle of
20Shockwaves are inherently interesting solutions in-and-of themselves. A brief discussion of shockwave solu-

tions in a non-linear form of the metric is included in the appendices §A.
21However, the results from the linear approximation agree with the results found for the full metric [56];

compare the results found in this section with those of appendices §A.
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mass, m, and having velocity, v, in the z-direction (we are no longer working in light-cone/light-

cone-like coordinates, but instead in traditional Minkowski coordinates, and we shall shortly

take the massless, ultra-relativistic limit, m → 0, v → 1) is [56]

Tµν(x) = m√
1 − v2

δ(x)δ(y)δ(z − vt)sµsν (2.85)

where sµ = δ0
µ +vδ3

µ. Einstein’s equations are as in (2.83), however, we need not have simplified

as much as was done – the statement

∂α∂
α(ϕkµkν) ≡ □(ϕkµkν) = □(hµν) = κTµν , (2.86)

is the same statement as would be found had we not reduced the equations of motion to the

non-trivial components. The Dirac-delta form of the energy-momentum tensor hints at the use

of a Green function to solve for the ‘graviton’ hµν . We use the retarded Green function and

find

hµν(x) = msµsν√[
(1 − v2)(x2 + y2) + (z − vt)2

]
(1 − v2)

. (2.87)

We now take the ultra-relativistic limit v → 1 and defining p := m(1 − v2)−1/2 and requiring

that p remain constant as we take the limit (which, itself, enforces that m → 0, the massless

limit). This limit is difficult to take for the left-hand side of (2.86) given the form of the solution

(2.87). However, applying the limit to the energy-momentum tensor is trivial, and it becomes

lim
v→1

p=const.
Tµν = pδ(x)δ(y)δ(z − t)sµsν (2.88)

where now it is understood that sµ
v→1= δ0

µ +δ3
µ. It is naturally tempting to use a Green function

to solve for hµν in this limit, but this cannot be used – the solution is found by an ansatz that

separates the non-trivial δ-function from the rest of the solution [56, 57], which yields

hµν(x) = 1
2pδ(z − t) ln(x2 + y2)sµsν + hH

µν , (2.89)

where hH
µν is the homogeneous solution to (2.86), and we have made use of the 2-dimensional
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Poisson equation Green function

(∂2
x + ∂2

y)G(x, y) = 2πδ(x)δ(y),

⇒ G(x, y) = 1
2 ln(x2 + y2).

(2.90)

Thus, hµν is only non-zero on the hyperplane z = t and the metric elsewhere reduces to the

Minkowski metric. It is interesting to visualise how hµν causes gµν to deviate from Minkowski

space when on the hyperplane z = t; this is shown in figure 1. Relating this back to our original

(a) (b)

Figure 1: Graphics showing the values of −hµν in the z = t hyperplane (i.e. the non-
Minkowskian contribution to the metric). The homogeneous contribution is ignored, and we
assume we are on a non-zero value of hµν ; that is h00, h33, h13 and h31. Thus, these are effec-
tively plots of − ln(x2+y2

r2
0

), where we have chosen r2
0 = 2. Note: the negative values are used, as

otherwise the ‘spike’ is not visible. (a) Graphic showing the divergence at the particle’s location.
(b) Graphic showing the effect of hµν in a region near the particle’s location.

purpose (finding the form of ϕ), we see that (2.89) suggests

ϕ(x) ∝ δ(z − t) ln
(√

x2 + y2
)
, (2.91)

in agreement with [7, 58].

The form of the graviton in (2.89) is missing one critical element – a scale factor in the

logarithm to ensure its argument is unitless. Re-expressing this in light-cone coordinates, we

have

hµν = pδ(u) ln
(
r̃

r0

)
kµkν , (2.92)

where we have ignored the homogeneous contribution, r0 is an arbitrary scale factor, and we
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have used r̃µ = (0, 0, x, y). With this choice, we have an expression for the single copy

Aa
µ = −ca Q

4πδ(u) ln
(
r̃

r0

)
kµ (2.93)

where we have used p → Q
4π to highlight that this is a charged (Yang-Mills) shockwave [54].

The zeroth copy is then

Φaã = cacã γ

4πδ(u) ln
(
r̃

r0

)
, (2.94)

producing what could be called a biadjoint scalar shockwave, and making the choice Q → γ to

highlight that these charges may be distinct.

The discussions presented in this section may be expanded upon in several instances – we

have not given much attention to the perspective gained from a purely Yang-Mills or biadjoint

scalar approach. There is, however, little to be added – one could solve for these solutions

explicitly and then arrive at the results presented in this section, and we avoid this for brevity.

The reader is directed to [59] for a more expansive discussion of the methods introduced in this

section (and discussions of monopoles).
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3 Topologically Massive Double Copy in 3D

We shall now investigate the primary theory we wish to elucidate in this work – the classical

double copy of TMG in 3D. The approach to this discussion is pedagogical; topologically mas-

sive theories are introduced before we broach the principal subject, and it is the hope of the

author that this methodology best articulates the most interesting and important aspects of

the theories.

An initial deliberation that one may have is why these theories are topologically massive. The

generic answer is that the additional term that are included in the Lagrangians are linked to the

Chern-Simons secondary characteristic classes, and the action Stop. =
∫

d3xLtop. is proportional

to these classes22 [60, 61].

We will introduce Topologically Massive Spinor Electrodynamics (TMSE), followed by Topo-

logically Massive Yang-Mills (TMYM) theory, before we introduce Topologically Massive Grav-

ity (TMG). In our discussion of TMG, we will assume a Kerr-Schild form of the metric and

aim to show that the classical double copy will (applying the single/zeroth copy ansatzes) will

produce the results expected for the TMYM and biadjoint scalar theories, respectively. Our

discussion will often follow that of [61], however we note that the sign conventions differ – we

always use ηµν = diag(−1, 1, 1).

Finally, many of the details in the discussions of the topologically massive gauge theories are

superfluous – all that we need for our double copy analysis is the equations of motion. However,

this section should serve the partial purpose of introducing the reader to topologically massive

gauge theories, and in this vain many further calculations are included. Additionally, many of

these results may be found in [61]. Where the results are simply presented in [61], we aim to

fill in the missing details – several of which are exceptionally tedious calculations which appear

explicitly in the coming sections and are not found in any of the conventional literature23.

3.1 Abelian Gauge Theory

Our ‘elementary’ example of a topologically massive Abelian vector theory is TMSE, whose

action is built up from a gauge term, a fermion term, an interaction term and a Chern-Simons
22More on the link to these classes is discussed in the appendices; see §B.
23Based on the author’s experience in producing this work.
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term [61]

STMSE = LG + LF + LI + LCS

=
∫

d3x
[(

− 1
4FµνF

µν
)

+
(
iψ̄ /∂ψ −mψ̄ψ

)
+
(
eψ̄γµψAµ

)
+
(µ

4 ε
µναFµνAα

)]
,

(3.1)

where Fµν = (∂µAν − ∂νAµ), the γµ are a 2-dimensional realisation of the Dirac algebra γ-

matrices from spinor electrodynamics (γ0 = σ3, γ1 = iσ1, γ2 = iσ2; σµ are the Pauli matrices),

ψ̄ ≡ ψ†γ0 (the Dirac adjoint), e is a dimensionful24 coupling constant [e] = 1/2, µ is the

(topological) mass given to the gauge field, and we have adopted the Feynman ‘slash’ convention

γµ∂µ ≡ /∂. One can easily find the equations of motion for ψ by solving the Euler-Lagrange

equations for ψ̄

(i/∂ −m+ e /A)ψ = 0, (3.2)

and, similarly, solving the Euler-Lagrange equations for the gauge field Aµ one finds the normal

Maxwell term as well as an additional contribution from the Chern-Simons term in the action

µ

2 ε
µαβFαβ + ∂αF

αµ = −eψ̄γµψ = Jµ. (3.3)

Critically, performing the (standard) gauge transformation

Aµ → A′
µ = Aµ + 1

e
∂µθ,

ψ → ψ′ = exp(iθ)ψ,
(3.4)

then we know the only term that needs to be checked for gauge invariance is the (new) Chern-

Simons contribution, which transforms as

LCS → L′
CS = µ

4 ε
µναF ′

µνA
′
α

= µ

4 ε
µνα
[
(Aα + 1

e∂αθ)∂µ(Aν + 1
e∂νθ) − (Aα + 1

e∂αθ)∂ν(Aµ + 1
e∂µθ)

]
= µ

4 ε
µνα
[
FµνAα + 1

eFµν∂αθ
]

= LCS + ∂α

( µ
4eε

µναFµν

)
,

(3.5)

24A dimensionless action being the guiding principle, in (natural) mass units:
[
∫

d3x] = −3, [∂µ] = −1 ⇒ [A] = 1/2, and [ψ] = 1 ⇒ [e] = 1/2. Note that this differs from the 4-dimensional
case where [e] = 0.
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where we have used the antisymmetry of the Levi-Civita symbol (and the symmetry of derivative

orderings) to rewrite the second term as a total derivative. Thus, the equations of motion are

invariant under gauge transformations of the form of (3.4). We briefly remark that discrete

transformations have the following effects [61]:

• Charge Conjugation: Equations of motion are invariant.

• Parity Transformation: Mass terms in equations of motion change sign.

• Time Reversal: Mass terms in equations of motion change sign.

• Time-Parity Transformation: Equations of motion invariant.

Hence, we do have CPT-symmetry.

3.1.1 Abelian Gauge Field Solutions

We can use the equations of motion (3.3) to solve for the vector potential, Aµ. First, notice

that the dual of Fµν is

∗Fα := 1
2ε

αµνFµν ; Fαβ := εαβµ ∗ Fµ. (3.6)

Taking the divergence of the equations of motion (assuming that the current is conserved) 3.3

we find that

∂µ

(µ
2 ε

µαβFαβ + ∂αF
αµ
)

= ∂µJ
µ

⇒ ∂µ(∗Fµ) = 0,
(3.7)

where the second term vanishes due to the symmetric-antisymmetric product. This amounts to

a statement of the Bianchi identity of the dual field, ∗Fµ. The dual form of (3.3) is

−ερσµ

(µ
2 ε

µαβFαβ + ∂αF
αµ
)

= −ερσµJ
µ,

⇒ −ερσµ∂αF
αµ − µ

2 ερσµε
µαβFαβ = −ερσµJ

µ,

⇒ −∂σ ∗ Fρ + ∂ρ ∗ Fσ − µ

2 (δα
ρ δ

β
σ − δα

σ δ
β
ρ )Fαβ = −ερσµJ

µ,

⇒ −∂σ ∗ Fρ + ∂ρ ∗ Fσ − µFρσ = −ερσµJ
µ ,

(3.8)

where we have used the 3-dimensional Levi-Civita product identity in going from the second to

the third line. Taking the divergence of the final (boxed) equation above yields a Klein-Gordon-
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like equation for the dual field strength

∂ρ
(

− ∂σ ∗ Fρ + ∂ρ ∗ Fσ − µFρσ

)
= −∂ρερσµJ

µ,

⇒ □ ∗ Fσ − ∂ρ∂σ ∗ Fρ − µ∂ρFρσ = −∂ρερσµJ
µ,

⇒ □ ∗ Fσ − µ2 ∗ Fσ + µJσ = −∂ρερσµJ
µ,

⇒ (□ + µ2) ∗ F σ = µ
(
ησµ − εσµρ∂ρ

µ

)
Jµ ,

(3.9)

where we have used (3.7) and (3.3) to go from line 2 to 3, and we have raised/lowered all indices

to produce the boxed equation. Hence, we can see that the excitations of the gauge field are

massive.

One can now make an interesting observation that (3.9) can be factorised into two operations

[61]

(
ηασ + εασβ

∂β

µ

)(
ησµ − εσµρ∂ρ

µ

)
∗ Fµ = µ

(
ησµ − εσµρ∂ρ

µ

)
Jµ,

⇒
(
ηασ + εασβ

∂β

µ

)
∗ F σ = 1

µ
Jσ ,

(3.10)

which, using the boxed equations in (3.9) and (3.10), allows us to immediately write down the

form of a solution for ∗Fµ

∗Fµ = µ

□ + µ2

(
ηµσ − εµσρ∂ρ

µ

)
Jσ

= 1
µ

(
ηµσ + εµσρ∂ρ

µ

)−1
Jσ.

(3.11)

We have performed an abuse of notation above, and the 1/(□+µ2) factor should be understood

as the inverse operator (□ + µ2)−1 that, when acting in conjunction with (□ + µ2) is just the

identity operator. We will continue to make similar use of this notation throughout this section.

Using the solution for the dual field strength to obtain a solution for the gauge vector field is a

‘finicky’ procedure that makes use of a subtle trick [18]. The procedure amounts to acting on
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both sides of (3.11) with a Levi-Civita symbol and a derivative. Explicitly, we find

LHS → εµαβ∂
β(∗Fµ) = −□Aα + ∂ρ∂αAρ,

RHS → εµαβ∂
β
[ µ

□ + µ2

(
ηµσ − εµσρ∂ρ

µ

)
Jσ

]
= µ

□ + µ2

(
εµαβ∂

βJµ − 1
µ
□Jα

)
,

⇒ Aα = µ

□ + µ2

( 1
µ
Jα − 1

□
εµαβ∂

βJµ
)

+ [gauge term(s)] .

(3.12)

The final gauge term(s) in the boxed equation of (3.12) has come from the second term, (∂ρ∂αAρ)

from the LHS transformation. Additionally, we have again made use of the notion of inverse

operators and the commutativity of differential operators to obtain the boxed result.

We conclude the discussion of topologically massive Abelian gauge theory at this juncture

– content with the knowledge that, the gauge field excitations are, indeed, massive. One could

consider the spinor field and/or one could continue by examining the spin content of the theory.

We shall do neither here, as it would be extraneous and would not provide any significant

insights into the theory that relate to the overarching discussion of classical double copy theory,

but we direct the reader to [61], where the spin content of the theory is examined in detail, and

to [62] for a more general discussion of spin in three dimensions. The key takeaways from the

discussion of the spin of the gauge field in [61] are:

1. The spin content is dependent on the Lorentz group (not just the rotation group O(2));

2. The massless theory is spinless;

3. If one wants a parity invariant version of the theory the spin must be zero or one must

introduce an additional degree of freedom; and

4. The field excitations described by (3.3) correspond to a (massive) spin-1 particle.

Having introduced topologically massive Abelian gauge theory in three dimensions, we extend

this analysis to the non-Abelian case of topologically massive Yang-Mills in the following section.

3.2 Yang-Mills Gauge Theory

The generalisation of the discussion in the previous section to the case of a non-Abelian gauge

field (now considering only the gauge contributions25 in the Lagrangian) begins with the Yang-
25We will still include a coupling to matter through an AµJ

µ term, but this Jµ has no explicit dynamics and
so can be considered an external current [18].
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Mills form of the Lagrangian with a Chern-Simons term [61]

LTMYM = − 1
2g2 tr

(
FµνFµν

)
+ µ

2g2 ε
µναtr

(
FµνAα − 2

3AµAνAα

)
+ 2tr

(
AµJ

µ
)
, (3.13)

where the trace is over the Lie algebra indices (suppressed), we have again chosen µ to be the

(topological) mass of the gauge field, and where g is the coupling constant satisfying [µ/g2] = 0

(µ/g2 is dimensionless). The factor of 2 in front of the source term is chosen to cancel the

normalisation from taking the trace. We will now assume we are working in a representation

of su(N), and we will make use of the conventions used in [63], so that we now write the gauge

field and field strength tensors in terms of the generators of the Lie algebra, T a, as

Aµ ≡ gT aAa
µ,

Fµν ≡ gT aF a
µν ≡ gT a

(
∂µA

a
ν − ∂ν , A

a
µ + igfabcAb

µA
c
ν

)
.

(3.14)

The conventions (and some useful results) based on our use of su(N) are [61, 63]

Dµ ≡ ∂µ + [Aµ, ·],

[T a, T b] ≡ ifabcT c,

tr(T a) = 0,

tr(T aT b) ≡ 1
2δ

ab,

tr(T aT bT c) = 1
4
(
dabc + ifabc

)
, where

dabc = 2tr
(
{T a, T b}T c

)
,

(3.15)

where Dµ is the covariant derivative, fabc are the structure constants, [·, ·] is the commutator

and {·, ·} is the anti-commutator. One should note that the object dabc is a totally symmetric

object due to the cyclic property of the trace

tr(T aT bT c) = tr(T bT cT a) = tr(T cT aT b). (3.16)

As in §3.1, we wish to find the equations of motion for the gauge field. The first term

in (3.13) produces the usual contribution to the equations of motion, DµF
µν , so we turn our

attention to the contribution to the equations of motion coming from the Chern-Simons term.
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To do this, we will expand the second term and we will solve for the Euler-Lagrange equation

contributions. The Chern-Simons term is expanded as

µ

2g2 ε
µναtr

(
FµνAα − 2

3AµAνAα

)
= µ

2 ε
µναtr

(
(∂µA

a
ν)Ab

αT
aT b − (∂νA

a
µ)Ab

αT
aT b + igfacdAc

µA
d
νA

b
αT

aT b − 2g
3 A

a
µA

b
νA

c
αT

aT bT c
)

= µ

4 ε
µνα
(
(∂µA

a
ν)Aa

α − (∂νA
a
µ)Aa

α + igfacdAc
µA

d
νA

a
α − g

3 if
abcAa

µA
b
νA

c
α

)
= µ

4 ε
µνα
(
(∂µA

a
ν)Aa

α − (∂νA
a
µ)Aa

α + igfabcAa
µA

b
νA

c
α − g

3 if
abcAa

µA
b
νA

c
α

)
= µ

4 ε
µνα
(
(∂µA

a
ν)Aa

α − (∂νA
a
µ)Aa

α + 2g
3 if

abcAa
µA

b
νA

c
α

)
,

(3.17)

where we first expanded in the generators, then explicitly took the traces (and used that the

symmetric-antisymmetric combination in the term εµναdabcAa
µA

b
νA

c
α = 0), then rearranged the

indices to simplify the final result. Using the form of (3.17), one of the Chern-Simons contri-

butions to the Euler-Lagrange equation is trivial

−∂σ
∂LCS
∂(∂σA

g
ρ) = −µ

4 ε
µνα∂σ

(
δσ

µδ
ρ
νδ

agAa
α − δσ

ν δ
ρ
µδ

agAa
α

)
= −µ

4 ∂σ

(
εσραAg

α − ερσαAg
α

)
= µ

4 ε
ρσα
(
∂σA

g
α − ∂αA

g
σ

)
,

(3.18)

while the other is slightly more tedious

∂LCS
∂Ag

ρ
= µ

4 ε
µνα
(
∂µA

a
νδ

agδρ
α − ∂νA

a
µδ

agδρ
α + 2g

3 if
abc(δagδρ

µA
b
νA

c
α + δbgδρ

νA
a
µA

c
α + δcgδρ

αA
a
µA

b
ν)
)

= µ

4
(
εµνρ∂µA

g
ν − εµνρ∂νA

g
µ + 2g

3 i(ε
ρναfgbcAb

νA
c
α + εµραfagcAa

µA
c
α + εµνρfabgAa

µA
b
ν)
)

= µ

4 ε
µνρ
(
(∂µA

g
ν − ∂νA

g
µ) + 2g

3 i(−f
gbcAb

νA
c
µ − fagcAa

µA
c
ν + fabgAa

µA
b
ν)
)

= µ

4 ε
µνρ
(
(∂µA

g
ν − ∂νA

g
µ) − 2g

3 if
gbc(Ab

νA
c
µ +Ac

µA
b
ν +Ac

µA
b
ν)
)

= µ

4 ε
µνρ
(
(∂µA

g
ν − ∂νA

g
µ) + 2gifgbcAb

µA
c
ν

)
(3.19)

where we have taken the derivatives, contracted all Kronecker-δ’s, factorised-out the Levi-

Civita symbol εµνρ making all necessary index changes, before finally factoring the structure

constants out of the relevant terms relabelling summed indices where necessary and using the
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antisymmetry of fgbc. The Chern-Simons term contribution to the Euler-Lagrange equations

may thus be expressed as

∂LCS
∂Ag

ρ
− ∂σ

∂LCS
∂(∂σA

g
ρ) = gJµ

⇒µ

2 ε
µνρ(∂µA

g
ν − ∂νA

g
µ + igfgbcAb

νA
c
µ) = µ

2 ε
ρµνFµν = gJµ.

(3.20)

Now, including the contribution associated to the Yang-Mills term and the source term, the

equations of motion may simply be expressed as

DαF
αµ + µ

2 ε
µαβFαβ = gJµ . (3.21)

Notice now that the equations of motion are gauge covariant.

The source-free form of the Lagrangian in (3.13) changes (as in the Abelian case) by a total

derivative. This can be shown explicitly by considering a gauge transformation (one should

recall that the transformation rule for Aµ is found by enforcing gauge covariance of the Yang-

Mills Lagrangian, so we need only consider the Chern-Simons term in the topologically massive

Yang-Mills Lagrangian) of the form [61, 64]

Aµ → A′
µ = U−1AµU + U−1∂µU, U ≡ U(x) ∈ SU(n)

⇒ Fµν → F ′
µν = U−1FµνU,

(3.22)

where U is a local transformation and is an element of the symmetry group (SU(n)) of the

original Yang-Mills theory. One sees that the Chern-Simons term transforms as (taking care to

note that we are transforming at the level of the Lagrangian and so do not discard any total
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derivatives as yet)

LCS → L′
CS = µ

2g2 ε
µναtr

(
F ′

µνA
′
α − 2

3A
′
µA

′
νA

′
α

)
= µ

2g2 ε
µναtr

[
U−1FµνU(U−1AαU + U−1∂αU)

− 2
3(U−1AµU + U−1∂µU)(U−1AνU + U−1∂νU)(U−1AαU + U−1∂αU)

]
= LCS + µ

2g2 ε
µναtr

[
U−1Fµν∂αU − 2

3U
−1{AµAν∂αU +Aµ(∂νU)U−1AαU

+ (∂µU)U−1AνAαU +Aµ(∂νU)U−1(∂αU) + (∂µU)U−1Aν(∂αU)

+ (∂µU)U−1(∂νU)U−1AαU + (∂µU)U−1(∂νU)U−1(∂αU)
}]

= LCS + µ

2g2 ε
µναtr

[
U−1(∂µAν − ∂νAµ)∂αU − 2

3U
−1{Aµ(∂νU)U−1(∂αU)

+ (∂µU)U−1Aν(∂αU) + (∂µU)U−1(∂νU)U−1AαU + (∂µU)U−1(∂νU)U−1(∂αU)
}]

= LCS − µ

g2 ε
µναtr

[
∂µ
(
Aν(∂αU)U−1)+ 1

3(∂µU)U−1(∂νU)U−1(∂αU)U−1
]
,

(3.23)

where we have used the commutator contribution of Fµν to cancel with the O(A2) terms to

obtain the fourth equality and have arrived at the final equality by writing terms as total

derivatives. Following [61], we assume that the transformation is (spatially and temporally)

asymptotically the identity (U(x) → I as x → ∞), then the contribution to the action

SCS =
∫

dxLCS is just a total derivative. We have not expressed the final equality in (3.23)

making use of this relationship – applying the condition U(x) → I as x → ∞ – causes the first

additional term (a surface integral) to vanish

∫
d3x

µ

g2 ε
µναtr

[
∂µ
(
Aν(∂αU)U−1)] = 0. (3.24)

However, this does not address the final term. Choosing U ∈ SU(M), M ≤ N so that SU(M)

is a subgroup of the full gauge group SU(N), then the remaining (additional) contribution to

the action is proportional to the winding number, w(U), of the gauge transformation, related

to the homotopy class of U [61, 65] and defined by[61]

w(U) := 1
24π2

∫
d3xεαβγtr

[
∂µU)U−1(∂νU)U−1(∂αU)U−1

]
. (3.25)
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Indeed, we may write the transformed Lagrangian as [61]

∫
dxLCS →

∫
dxLCS + µ8π2

g2 w(U). (3.26)

The significance of this is that the Chern-Simons term’s contribution action is not zero, instead,

it takes an integer-multiple of µ8π2/g2, where the integer tells us to which homotopy class the

gauge transformation, U , belongs26. The action itself need not be invariant, rather it is the

contribution to the path integral, exp(i
∫

d3xL), that we hope to leave invariant to preserve the

expectation values of gauge invariant operators [18, 61]. The implications of this requirement,

for an arbitrary gauge invariant operator, Ô, are [61]

e
i 8π2µ

g2 w(U) ⟨Ô⟩ != ⟨Ô⟩

⇒ 4π µ
g2 = c,∈ Z ,

(3.27)

which is a mass quantization condition. We turn now to finding a Klein-Gordon-like equation

in this non-Abelian case, using a similar approach to that used in §3.1.1.

3.2.1 ‘Klein-Gordon’ Non-Abelian Gauge Field Strength Equation

We now wish to find a differential equation that will encapsulate the solutions for the non-

Abelian gauge field, as an analogue to what was done in §3.1. We are interested in showing

that the gauge field excitations are massive, and this should be true regardless of the presence

of a source. To that end (and to simplify the calculations), in precisely the same manner as

before, we dualise the source-free form of (3.21) – where we will still make use of (3.6) as the

definition of the dual, but it should be obvious that the identity is now being applied to the

Yang-Mills (non-Abelian) field strength and not just the Maxwell terms – by making use of the

covariant (dual) Bianchi identity. Proving this identity makes use of an analogous approach

to that shown in (3.7), but now we take the covariant derivative of the equations of motion in

(3.21). We wish to find Dµ ∗ Fµ = 0, so it is sufficient to show that the covariant divergence of

the first (Yang-Mills) term is vanishing. The result of trying to analytically compute this result
26The discussion of winding numbers in this work will not exceed the qualitative one presented. However, [65]

provides a thorough discussion of the winding number as it is used in this context. Winding numbers also appear
in alternative contexts – which is not surprising as they are topological objects – such as superconductivity and
string theory. See, for instance, [66] and [67].
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is quite long, and we attempt to organize the twelve terms systematically:

Dν(DµF
µν)

= ( ∂ν︸︷︷︸
A

+ gAa
ν [T a, ·]︸ ︷︷ ︸

B

) ◦ ( ∂µ︸︷︷︸
P

+ gAb
µ[T b, ·]︸ ︷︷ ︸

Q

) ◦ (g∂µAνc︸ ︷︷ ︸
X

− g∂µAνc︸ ︷︷ ︸
Y

+ ig2f cdeAµdAνe︸ ︷︷ ︸
Z

)T c

?= 0,

(3.28)

so that the twelve terms may be expressed in tabular form shown in table 4. Then the covariant

APX-1 g∂ν∂
2AνcT c

APY-1 −g∂µ∂
2AµcT c

APZ-2 ig2f cde
[
(∂ν∂µA

νd)Aµe +Aνd(∂ν∂µA
µe) + (∂µA

νd)(∂νA
µe) + (∂νA

νd)(∂µA
µe)
]
T c

AQX-2 ig2f cde
[
(∂νA

d
µ)(∂µAνe) +Ad

µ∂ν∂
αAµe

]
T c

AQY-2 −ig2f cde
[
(∂νA

d
µ)(∂νAµe) +Ad

µ∂
2Aµe

]
T c

AQZ-3 −g3fgdef bgc
[
(∂νA

b
µ)AνdAµe +Ab

µ(∂νA
νd)Aµe +Ab

µA
νd(∂νA

µe)
]
T c

BPX-2 ig2f cdeAd
ν∂

2AνeT c

BPY-2 −ig2f cdeAd
ν∂µ∂

νAµeT c

BPZ-3 −g3fgdef bgcAb
ν

[
(∂µA

νd)Aµe +Aνd(∂µA
µe)
]
T c

BQX-3 −g3fgdef bgcAb
νA

d
µ∂

νAνeT c

BQY-3 g3fdegf bgcAb
νA

d
µ∂

νAµeT c

BQZ-4 −ig4fkdef bkgfagcAa
νA

b
µA

νdAµeT c

Table 4: Table of systematically organized products from (3.28). Note that in all cases Lie
algebra indices have been transformed for easier comparison of the terms. The notation ‘AQZ-
2’ indicates that the term is second order in the coupling constant g, and should be matched
to the same order of terms. Additionally, Real(Complex) terms should only cancel with other
Real(Complex) terms. Terms are colour coded to show which combinations are vanishing.

divergence Dν(DµF
µν) is, indeed, vanishing. We see this by noting that all the ‘grouped’

terms vanish when combined. The terms of orders 0 and 1 in the structure constants vanish

by a simple term-matching procedure. Additionally, BQX + BQY = 0, trivially. The first

term of BPZ cancels with the last term of AQZ, the second term of BPZ cancels with the

second term of AQZ, and the remaining term cancels since it is a product of a symmetric and

antisymmetric object (in the Lie algebra indices d, e). Finally, BQZ is also vanishing due to the

symmetric/antisymmetric product in d, e. Thus, we may conclude that the covariant divergence
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of the Yang-Mills term in the equation of motion is vanishing. The implications of this are,

using the equations of motion (3.21) and the now-proved result (3.28), that we are forced to

conclude that

Dν ∗ F ν = 0 , (3.29)

which is the Yang-Mills dual field Bianchi identity. Dualising the source-free equations of motion

produces an equation of motion for the dual field (using precisely the same method shown in

(3.8))

ερσµ

(
DαF

αµ + µ

2 ε
µαβFαβ

)
= 0

⇒ Dρ ∗ Fσ −Dσ ∗ Fρ − µFρσ = 0 .
(3.30)

Taking the covariant divergence of (3.30) one finds

Dρ

(
Dρ ∗ Fσ −Dσ ∗ F ρ − µF ρ

σ

)
= 0

⇒(DρD
ρ + µ2) ∗ Fσ = DρDσ ∗ F ρ,

(3.31)

where we have made use of the equations of motion (3.21) to find this non-Abelian covariant

analogue of (3.9). Thus, the source-free equation has massive degrees of freedom. One cannot

proceed as was done in the Abelian case, making use of inverse operations such as □−1 because

the non-Abelian analogue, DµD
µ is no longer gauge invariant. One could pick a gauge and solve

for the field in that particular gauge, but this does not add significant value to the principal

ideas of this work. We thus do not proceed as before, and instead conclude the discussion of

the solutions at this point.

3.2.2 Linearised Yang-Mills Equations of Motion

Before discussing the gravitational theory, it is essential that we present the TMYM equations

which we hope shall be derivable when applying the Kerr-Schild Ansatz. In particular, we wish

to show that the linearised TMYM equations of motion are reproduced.

We linearise our TMYM equations of motion by applying the following ansatz to (3.14):

Aµ ≡ gT aAa
µ ≡ gT acaAµ, (3.32)
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that is, we make the ansatz that Aa
µ is separable into its gauge component, the constant colour

factor ca, and its Lorentz component, Aµ. The critical implications of this choice are that

[Aµ, Aν ] = g2Aa
µA

b
ν [T a, T b] = g2AµAνc

acb(ifabc)T c = 0, (3.33)

where the final equality is due to the antisymmetry of fabc multiplying with the symmetric

colour factor product cacb. The has further implications for the equations of motion for the

equations of motion

gJµ = DαF
αµ + µ

2 ε
µαβFαβ

= ca∂α
(
∂αAµ − ∂µAα)T a + µ

2 ε
µαβca(∂αAβ − ∂βAα

)
T a,

⇒ ca
[
∂αFαµ + µ

2 ε
µαβFαβ

]
= cagJ µ ,

(3.34)

where we have introduced Fµν := ∂µAν − ∂νAµ as a Maxwell-like field strength tensor, and

have similarly separated Jµa ≡ caJ µ. One should note that this equation of motion is in the

Lie-algebra indexed form of (3.3). The boxed equation in (3.34) is the result that we hope to

reproduce when applying double copy theory to the Kerr-Schild metric in TMG. It should also

be observed, then, that if the application of the ansatz (2.33) is successfully applied with ca

included (that is, the ansatz reproduces the linearised TMYM equations of motion), then it will

automatically satisfy the TMSE equations of motion. All that now remains is to take on TMG

and to show that, with a Kerr-Schild ansatz, it reproduces the linearised TMYM equations of

motion; this will be the subject of the following sections.

3.3 Gravitational Theory

Finally, we consider Topologically Massive Gravity (TMG). As in the previous sections, we

begin with the action (without a cosmological constant) [21, 61, 68],

S = 1
κ2

∫
d3x

√
−g
[

−R− 1
2mϵµνρ

(
Γα

µβ∂νΓβ
αρ + 2

3Γα
µβΓβ

νγΓγ
ρα

)]
+ SMatter. (3.35)
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A direct computation of the equations of motion yields

−κ2

2 Tµν = Gµν − 1
8m

[
ϵνβγ(Γα

µ
β ;γ

;α − Γµ
αβ ;γ

;α) − ϵµβγ(Γα
ν

β ;γ
;α − Γν

αβ ;γ
;α)

− ϵν
βγΓα

µβ,γ ;α − ϵµ
βγΓα

νβ,γ ;α − ϵαβ
γ(Γµν

α;β
;γ + Γνµ

α;β
;γ) + ϵν

λδgβγgµαΓα
βλ,δ ;γ

− gνα(−ϵµλδgβγΓα
βλ,δ ;γ + ϵβγλΓα

µβ,γ ;λ) − ϵβγλgµαΓα
νβ,γ ;λ

]
.

(3.36)

While it is not immediately apparent looking at (3.36), the terms in square brackets reduce27

to 8Cµν , where Cµν is the Cotton tensor introduced in (2.18). Thus, the resulting Einstein

equations are,

Ḡµ
ν + 1

m
C̄µ

ν = −κ2

2 T̄
µ
ν , (3.37)

in agreement with results from [21, 69]. Critically, the Cotton tensor is traceless, which we

utilise to find

−κ2

2 T̄ = Ḡµ
µ = R̄µ

µ − 1
2δ

µ
µR̄

= −1
2R̄

⇒κ2T̄ = R̄,

(3.38)

whence we rewrite the equations of motion (3.37) in the (partially) trace-reversed form

R̄µ
ν + 1

m
C̄µ

ν = −κ2

2
(
T̄µ

ν − T̄ δµ
ν

)
. (3.39)

We can make use of the Killing vector trick employed several times in §2, where we hold-off

on making use of a specific coordinate system for now. Before we perform the contraction, we

modify (3.39), writing it in a fully trace-reversed form, by noting

R̄µ
ν + 1

m
C̄µ

ν = −κ2

2
(
T̄µ

ν − T̄ δµ
ν

)
⇒ R̄µ

ν + 1
m
ϵµαβ∇α(R̄νβ − 1

4gνβR̄) = −κ2

2
(
T̄µ

ν − T̄ δµ
ν

)
⇒ R̄µ

ν + 1
m
ϵµαβ∇αR̄νβ = −κ2

2
(
T̄µ

ν − T̄ δµ
ν − 1

2mϵµαβ∇αgνβT̄
)
,

(3.40)

27Showing that this is the case from the form of the equations of motion (3.36) is tedious, and a much more
direct method makes use of the dreibein formalism to produce this result. We can transform back from the
dreibein formalism to verify the claim that the terms in square brackets produces 8Cµν . See §3.3.1
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where we make use of (2.18) to expand the Cotton tensor, followed by (3.38). We may now

utilise the Kerr-Schild form of the Ricci tensor from (2.15). The left-hand side of (3.40) becomes

LHS = −κ

2
[
∂2(hµ

ν ) − ∂µ∂β(hβ
ν ) − ∂ν∂β(hµβ )

]
− κ

2mϵµαβ∇α

[
∂2(hνβ) − ∂ν∂γ(hγ

β ) − ∂β∂γ(h γ
ν )
]
,

(3.41)

and to this form we now contract with a Killing vector V ν and apply the Kerr-Schild single

copy ansatz (2.33).

Before we continue, we briefly show that the gravitational excitations are also, themselves,

massive. As in the previous sections, these massive excitations should be present regardless

of the presence of any source terms, so we consider only the source-free equations (Tµν = 0).

Showing the gravitational excitations are massive is achieved by recasting the equations of

motions as [61]

O(m) ρσ
µν Rρσ = 0, where

O(m) ρσ
µν :=

(
δρ

µδ
σ
ν − 1

2gµνg
ρσ
)

+ 1
m
√

|g|
ε αβ

µ

(
δρ

βδ
σ
ν − 1

4g
ρσgνβ

)
∇α.

(3.42)

This operator is analogous to the one discussed in the case of TMSE (see in particular (3.10)).

Assuming also that the Ricci scalar is vanishing, R = 0, one finds [61]

m2O(−m) αβ
µν O(m) ρσ

αβ Rρσ = 0

⇒ (∇2 +m2)Rµν = −gµνR
αβRαβ + 3Rα

µRνα ,

(3.43)

which is the expression analogous to the Abelian gauge theory case (3.9) and the non-Abelian

gauge theory case (3.31); showing that the gravitational excitations are, indeed, massive.

Recall now the strategies described at the end of §2.4; we can consider stationary/wave

solutions most conveniently by a convenient choice of coordinates. Before we do this, however,

we address the issue of the simplification of the equations of motion discussed earlier in this

section.

3.3.1 Diversion: Dreibeins and TMG

As was previously noted, the jump from (3.36) to (3.37) is more akin to a long-jump than an

obvious logical step. The discussion leading to this section sought to avoid introducing new
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conventions in the middle of what was (apart from the ‘on-faith’ simplification of the equation

of motion) otherwise a logically consistent introduction to TMG. However, as §3 is supposed to

serve not only as an introduction to the 3-dimensional topologically massive double copy theory,

but also as an introduction to topologically massive theories in three dimensions in general, we

introduce the more conventional dreibein formalism here. Some familiarity with differential

geometry (especially forms and exterior calculus) is assumed28.

At the most basic level, the dreibein formalism29 is captured by the statement that we should

typically be able to pick a local coordinate frame which is Minkowskian (flat). The dreibeins,

ea, are defined by

g = gµνdxµ⊗dxν = ηabe
a ⊗ eb, ,where

ea = ea
µdxµ ⇒ gµν = ηabe

a
µe

b
ν ,

(3.44)

where the Greek indices are spacetime indices and the Latin indices are the dreibein indices.

We additionally require det(ea
µ) ̸= 0 so that we may define the inverse of dreibeins or a dual

basis for vectors (eµ
a∂µ). So that the inverse metrics are defined in the anticipated way

gµν = ηabeµ
ae

ν
b ; ηab = gµνea

µe
b
ν . (3.45)

All various index locations are defined in the intuitive way and are only acted upon by the

appropriate metric object – Latin indices are only ever acted upon by η and Greek indices by

g, so there is never any ambiguity (e.g. eaµ = gµαe
α
a = ηabe

b
µ, and similarly for raising indices).

Much more can be said about dreibeins, but we refrain from delving into unnecessary detail –

we direct the reader to [72, 73] (or any comprehensive introduction to general relativity and/or

gravity as a gauge theory).

Vector coefficients may be written in terms of dreibein indices as V a = ea
µV

µ. The covariant
28The reader looking for a thorough introduction (and beyond) to differential geometry is directed to [70]; the

reader aiming for a more rapid introduction is directed to the relevant sections in [71]. Most textbooks on gravity
as a gauge theory are likely to include introductions to the relevant differential geometry as well. The discussions
in [72] are likely the shortest and most rapid introduction to all the appropriate material in this section.

29Throughout this discussion we will refer only to ‘dreibeins’, although the experienced general relativist will
be aware that many of the introductory explanations are generic, and one could equally substitute ‘vielbeins’ in
place of ‘dreibeins’ – we do this to avoid additional unnecessary explanations.
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derivative then also transforms to accommodate this

DµV
a = ∂µV

a + ωa
µbV

b, (3.46)

where the new object, ωa
µb is called the spin connection (a one-form), whose components are

fixed by requiring that the parallel transport of the dreibein components, ea
µ is zero [74, 75]

0 = Dµe
a
ν = ∂µe

a
ν − Γα

µνe
a
α + ωa

µbe
b
ν = 0. (3.47)

Typically, one now introduces the torsion forms [72] and makes the assumption that the original

spacetime connection Γα
µν is the torsion-free Levi-Civita connection. Then an expression of

torsion (in the language of forms) is [72]

T a := Dea = dea + ωa
b ∧ eb (3.48)

where d is the exterior derivative, ‘∧’ is the wedge product, and ωa
b = ωa

µbdxµ. The statement

that T a = 0 is called Cartan’s first structure equation [72]. One can also now introduce the

curvature forms (whose definition30 is also called Cartan’s second structure equation) [72]

Ra
b := dωa

b + ωa
c ∧ ωc

b = Ra
µνbdxµ ∧ dxν , (3.49)

whose form is analogous to the (form) expression of the Yang-Mills gauge field F = dA+A∧A.

Using this formalism, the expression of the Chern-Simons contribution to the action (3.35)

is [61]

SCS = − 1
4κ2m

∫
d3xϵµνρ

(
Rµνabω

ab
ρ + 2

3ω
b

µaω
c

νb ω
a

ρc

)
. (3.50)

The approach we use to find the equations of motion is guided by comments in [61]. Varying

this action with respect to the spin connection yields

δSCS = − 1
4κ2m

∫
d3xϵµνρ

(
R ab

µν

)
δωρab (3.51)

30Although it should be noted that we treat Cartan’s second structure equation as a definition, a method
that is more easily linked to the Riemann curvature is Ra

µνbV
b := [Dµ, Dν ]V a. This also enhances the analogy

between curvature in gravity and field strength in Yang-Mills since Fµν ∝ [D̃µ, D̃ν ], where we have used D̃µ to
distinguish these Yang-Mills covariant derivatives (D̃µ) from their gravitational analogues (Dµ).
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What we would like is an expression in terms of the dreibeins, and we may obtain one by consid-

ering the variation of (3.47) [61], from which one obtains (we leave out indices for readability)

(3.47) ⇒0 = ∂(δe) + (δω)e+ ω(δe) − (δΓ)e− Γ(δe)

⇒(δω)e =
(

−D(δe) + (δΓ)e
)

⇒ δωµab = eν
b

(
δΓρ

µνeρa −Dµδeνa

)
.

(3.52)

We can substitute this finding in (3.51)

δSCS = − 1
4κ2m

∫
d3xϵµνρ

(
R ab

µν

)
eα

b

(
δΓβ

ραeβa −Dρδeαa

)
. (3.53)

Focusing on the second term only, the only term that survives after performing a covariant

‘integration by parts’ is proportional to the expression for the second (differential) Bianchi

identity [61, 72]

Second term ∝ ϵµνρDµR
ab

νρ = 0. (3.54)

This means that only the first term contributes non-trivially to the variation:

δSCS = − 1
4κ2m

∫
d3xϵµνρR α

µνβ δΓβ
ρα (3.55)

We would now like an expression of δΓ in terms of the variation of the metric. One can make

use of Riemannian normal coordinates to write this variation as [76]

δΓσ
µν = −1

2
(
gλµ∇ν(δgλσ) + gλν∇µ(δgλσ) − gµαgνβ∇σ(δgαβ)

)
. (3.56)

The results of inserting this expression into the variation of the action is

δSCS = − 1
4κ2m

∫
d3xϵµνρR α

µνβ δΓβ
ρα

= 1
8κ2m

∫
d3xϵµνρ

[
R α

µνβ gλρ∇α(δgλβ) +Rµνβλ∇ρ(δgλβ) −Rµνβλgρσ∇β(δgσλ)
]
.

(3.57)

Making use of integration by parts and the relationship between covariant derivatives of the

Riemann tensor and the Ricci tensor

∇αRµναβ = ∇µRβν − ∇νRβµ, (3.58)
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we finally arrive at the expression of the variation as

δSCS = 1
κ2m

∫
d3xϵ ασ

ρ ∇α

(
Rσβ − 1

2gσβR
)
δgρβ

δSCS = 1
κ2m

∫
d3x

√
|g|Cρβδgρβ ,

(3.59)

where Cρβ is the Cotton tensor defined in (2.18).

This concludes the discussion of dreibeins – the derivation of the Cotton tensor term from

the Chern-Simons action was the primary goal of this section – justifying (3.37) – and the

other goal was to provide a brief introduction to the dreibein formalism, conventionally used in

discussions of gravity as a gauge theory.

We now return from this diversion and consider some time-dependent solutions arising from

TMG using Kerr-Schild metrics.

3.4 3D TMG Time-Dependent Solutions

First, we consider wave solutions by choosing 3-dimensional light-cone coordinates, where the

relevant details are summarised as

u = t− z, v = t+ z, x = x, xµ = (u, v, x), ∂µ = (∂u, ∂v, ∂x),

⇒ ds2 = dx2 − 2dudv + κϕkµkνdxµdxν = dx2 − 2dudv + κϕdu2,

⇒ kµ = (−1, 0, 0), kµ = (0, 1, 0), Vµ = (0, 1, 0), V µ = (−1, 0, 0),

(3.60)

which satisfies that kµ is null and additionally31 satisfies ∇µkν = 0, while V µ is easily verified to

be a Killing vector (the metric is v-independent, so LV [g] = 0 by quick calculation, where LV [·]

is the Lie derivative with respect to V ), such that k · V = 1. Additionally, with this choice of

coordinates we find that R̄µ
µ = 0, which, looking at (3.39), implies that the energy-momentum

tensor is traceless; T̄ = 0. Additionally, we will consider ϕ ≡ ϕ(u, x), that is, ϕ is v-independent.

Importantly, the fact that ∇µkν = 0 allows us to replace the covariant derivative in (3.41) with

a partial derivative, whereafter the contraction of the equations of motion with V ν is simpler,
31These calculations can be (and were) done by hand, however it may also be done using xCoba from xAct

[34] and/or the “diffgeo” package for Mathematica [77], which was found by the author to be better for quick
Christoffel symbol calculations/verifications for a metric in a given coordinate basis. See appendices §C.
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and applying the ansatz Aµ = kµϕ, they reduce to

−κT̄µ
νV

ν = −
{
∂αF

αµkν − ∂α∂ν(ϕkαkµ) + 1
m
ϵµαβ∂α[∂γFγβkν − ∂γ∂ν(ϕkγkβ)]

}
V ν

⇒ ∂αF
αµ + 1

m
ϵµαβ∂α(∂γFγβ) = gJµ := 2gT̄µ

νV
ν

(3.61)

where κ/2 → g, and we have removed the additional terms by using that ϕ is independent of v

so that ∂µ(kµϕ) = ∂v(ϕ) = 0. Comparing the result obtained to that of the linearised TMYM

equations of motion (3.34), we see that for the result found in (3.61) to be the correct single

copy, we must require

1
m
ϵµαβ∂α(∂γFγβ) != µ

2 ε
µαβFαβ, (3.62)

where we have left the Yang-Mills form on the RHS as Fαβ and in terms of mass term µ to

make it clear that this is from (3.34). We can consider what the implications are for the scalar

field based on this result – in doing so we equate Fµν ≡ Fµν and µ ≡ m – from which we find

(3.62) ⇒ 1
m2 ϵ

µαβ∂α(∂2ϕkβ) = 1
2ε

µαβ(∂αϕkβ − ∂βϕkα)

⇒ϵµαβ∂α[∂2ϕ]kβ = εµαβ∂α[m2ϕ]kβ

⇒ (∂2 −m2)ϕ = 0 ,

(3.63)

where to obtain the final implication we have used that
√

|g| = 1 so that the epsilon symbol

and the epsilon tensor may be numerically identified. Note that the boxed equation is a Klein-

Gordon equation (more easily seen when considering the derivative in (t, x, y) coordinates),

and so it is a differential equation for ϕ. It is interesting also interesting to observe that this

solution pre-empts the massive biadjoint scalar solution as seen in (2.23). It has the known

solution (noting that ∂2ϕ = ∂2
xϕ since ϕ is v-independent)

ϕ(x, u) = P (u)emx +Q(u)e−mx, (3.64)

where P and Q are arbitrary functions of u. We shall keep this in mind when we proceed

to consider the zeroth copy. First, to fully recover the linearised TMYM (assuming that the

relation (3.63) is satisfied) we simply include the missing colour factor in front of each side of
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the equations of motion

We can contract the single copy equation of motion (3.61) with another Killing vector to

find a zeroth copy equation of motion

2gT̄µ
νV

νVµ =
[
∂αF

αµ + 1
m
ϵµαβ∂α(∂γFγβ)

]
Vµ

= ∂2ϕ+ 1
m
Vµϵ

µαβ∂α∂
2ϕkβ

= ∂2ϕ+mVµϵ
µαβ∂αϕkβ

⇒ ∂2ϕ+mVµϵ
µαβ∂αϕkβ = 2gT̄µ

νV
νVµ =: j ,

(3.65)

where we have used the condition derived in (3.63) in going from the second to the third equality.

In the chosen coordinates (3.60) this may be explicitly restated as

∂2ϕ+m∂xϕ = j

⇒∂2
xϕ+m∂xϕ = j,

(3.66)

where the sign of the mass terms comes from defining ϵuvx = 1 ⇒ ϵuvx = −1, as well as from

the form of kµ. If we ‘turn off’ the source and apply (3.64) we find

m2P (u)emx = 0

⇒ ϕ(u, x) = Q(u)e−mx ,

(3.67)

in agreement with results found in [21]. Thus, the consistency of the double copy throughout

the zeroth and single copies implies the boxed solution for ϕ in (3.67). The scalar field solution

(3.67) satisfies the same equations of motion as the massive biadjoint scalar theory (2.23), where

all that is required is to insert colour pairs cacã on either side of the equation and to identify

j = J and ϕ ≡ Φ.

It is easy to verify that a plane wave solution

ϕ(u, x) ≡ ϕ(t− z, x) = Q0e
±ik(t−z)−mx, (3.68)

satisfies the source-free equations of motion. This solution corresponds to a plane wave that

exponentially decays along the x-direction. We now proceed to consider the simplest form of

the sourced equations found in this section – a point-source – otherwise known as a shockwave
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solution.

The shockwave solution in TMG is given by an energy-momentum tensor that takes the

form (preserving our light-cone coordinates from the previous section)32 [21]

Tµν = pδ(x)δ(u)δv
µδ

v
ν . (3.69)

Then we should consider the only non-zero component of the energy-momentum tensor, Tvv,

or, in the form of the equations of the previous section, T̄ u
v. Given the generality with which we

solved for the solutions of ϕ in (3.60)-(3.66), one may be tempted to assume that we can choose

to solve the differential equations for ϕ at any step in the process, and ‘propagate’ the solution

to the different levels, and thus expect the consistency of the solutions will be maintained by

the fact that we have been consistent in our derivation thereof. We begin with the simpler case

of biadjoint scalar theory. This is not the case. The issue is two-fold [18, 21]:

1. The differential equation to be solved for phi in the case of TMG is third order in the

derivative and the differential equation for ϕ in the TMYM case is second order in the

derivative, so that solutions are lost when starting in the TMYM case.

2. The second issue is closely related to the first and concerns the boundary conditions. The

choice of boundary conditions need to ensure the double copy relation holds, and given

the different order of derivatives of ϕ in the TMG and TMYM cases, these will necessarily

be different.

In essence, the statement is that the ϕ’s are not the same when translating between TMG and

TMYM. The boundary conditions that ensure the double copy may be used are known [21],

and we will systematically discuss the solutions now.

For TMG, the boundary conditions are that for x > 0, the metric is asymptotically flat, and

that the metric is flat for all x < 0 [21]

1. x > 0 : hµν → 0 as x → ∞,

2. x < 0 : hµν = 0.
(3.70)

Using the ansatz ϕ(u, x) = δ(u)f(x) and applying the source (3.69) to (3.61) (after restating it
32See §2.6.2 and §A. We lose the y-coordinate and our sµ becomes sµ = δt

µ + δz
µ → δv

µ.
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in terms of ϕ and kµ), we arrive at the following differential equation for f (after multiplying

through by m)

∂3
xf(x) +m∂2

xf(x) = κpmδ(x), (3.71)

whose solution is known (and was verified with Wolfram Mathematica [33]) to be

f(x) = C1 + C2x+ κpxΘ(−x) − 1
m
κpΘ(−x) + e−mx

m2

(
C3 + κmpΘ(x)

)
, (3.72)

for constants C1, C2 and C3 and where Θ(x) is the Heaviside function. Enforcing that the

boundary conditions hold, we arrive at the solution

f(x) = κpxΘ(−x) − 1
m
κpΘ(−x) + e−mx

m
κpΘ(x) , (3.73)

.

In the case of TMYM, the appropriate boundary conditions correspond to a vanishing field

strength when x < 0 and to an asymptotically vanishing gauge field for x > 0 [21]

1. x > 0 : Aµ → 0 as x → ∞,

2. x < 0 : Fµν = 0.
(3.74)

An appropriate choice for the source in this case is

Jµ = Qδ(u)δ(x)δµ
v , (3.75)

where we have exchanged κp → Q to highlight the fact that this should now be a (colour)

charged source, not a massively charged one. The ansatz for the gauge field (referring to (3.60))

is

Aa = −caδ(u)f̃(x)du. (3.76)

where f̃ is not, as yet, assumed to share any relationship with the f of TMG. Via substitution

of this ansatz into (3.61), one finds the following differential equation

∂2
xf̃(x) +m∂xf̃(x) = −gQδ(x), (3.77)
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whose solution is easily computed to be

f̃(x) = C1 + e−mx

m

(
C2 − (emx − 1)gQΘ(−x)

)
, (3.78)

and, again, enforcing the boundary conditions yields

f̃(x) = g
Q

m

(
e−mx + Θ(−x)

)
. (3.79)

Finally, we consider the massive biadjoint scalar solutions. In this case the boundary con-

ditions are (asymptotically) symmetric [21]

ϕ(x) → 0 as |x| → ∞. (3.80)

The ansatz for the biadjoint scalar is

Φaã = cacãϕ. (3.81)

The differential equation arising from (3.65) is just a sourced Klein-Gordon equation

(∂2
x −m2)ϕ = −γδ(u)δ(x), (3.82)

where we have used κp → γ to highlight again that the charge may be of different kind. The

solution in this case, applying the boundary conditions (3.80) is known to be [21]

ϕ(x, u) = γ

2mδ(u)
(
emxΘ(−x) + e−mxΘ(x)

)
. (3.83)

Thus, it should be clear that the solutions (3.73), (3.79) and (3.83) are now all consistent, but

they each require their own consideration and an appropriate application of boundary conditions

at each level. This is distinct from the 4-dimensional case; the derivatives in the gravitational

and Yang-Mills theories were both second order, and consistency of ϕ across the double, single

and zeroth copies was trivial.

This concludes our discussion of the time-dependent solutions of the classical 3-dimensional

topologically massive double copy. Contrary to what one might expect, the stationary solutions
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(corresponding to the double copy of anyons[28]) is more complicated than the time-dependent

solutions, and discussions of these solutions is to be considered by the author in future work.
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4 Concluding Remarks

4.1 Review

The primary goal of this work has been to introduce the massive classical double copy in

(2+1)-dimensions. The approach to doing this that was adopted in this work was to system-

atically (and, at times, pedagogically) build up the theory from the ‘elementary’ cases to the

more challenging ones.

In §1, we provided contextual and historical placement for double copy theory, with a focus

on the origins, limitations, and motivations for why the double copy is worth investigation.

The focus of §2 was on introducing the conventional and necessary tools used to tackle the

classical double copy in particular; with a thorough introduction to Kerr-Schild metrics and their

associated properties. This discussion was guided by some archetypal examples of successful

applications of the classical double copy for relatively simple time-independent (Schwarzchild

§2.5.1, Kerr §2.5.2) and time-dependent (plane waves §2.6.1, shockwaves §2.6.2) systems.

The principal investigation of this work was presented in §3. The goal of §3 was two-fold:

to rigorously introduce the idea of topologically massive theories in 3-dimensions (TMSE §3.1,

TMYM §3.2, TMG §3.3), and to show that the classical double copy in these topologically

massive cases may successfully reproduce the linearised TMYM (single copy) and massive lin-

earised biadjoint scalar theory (zeroth copy) time-dependent solutions – in particular, plane

wave shockwave solutions (§3.4).

4.2 Discussion and Future Directions

The topologically massive classical double copy has been shown to successfully reproduce the

time-dependent plane wave and shockwave equations of motion for linearised TMYM theory

(and by virtue of this, topologically massive electrodynamics33 (TME) also), as well as massive

biadjoint scalar theory. The success of massive classical double copy in reproducing the time-

dependent solutions was non-trivial – the boundary conditions are specifically chosen in order

to reproduce the single and zeroth copy solutions. Nonetheless, it has been suggested in [21]

that the implications of these double copy relations may suggest possible similar (potentially

simpler) relations for the so-called Weyl double copy [55]; a double copy relation exhibited by
33We say TME instead of the full TMSE that was considered as the spinor equations of motion did not appear

in the single copy.

63



the Weyl tensor (double copy) and Yang-Mills field strength (single copy). As was mentioned

in the text, the Weyl tensor is vanishing in three dimensions, however, the existence of the

analogous Cotton tensor means that these relations could be (and have been) examined in the

context of a Cotton double copy [78].

A result that is discussed in the literature, but that is not presented here, is the 3-dimensional

double copy of the topologically massive time-independent equations of motion; the double copy

of anyons [28]. The approach to this static case used in [28] makes use of amplitude techniques,

and claims that the double copy of anyons is to be realised when one takes the single copy

generated by TMG with a massless spin-2 ghost field; whether this is the correct approach/in-

terpretation is still under investigation. An obvious and, as yet, unexplored approach to the

double copy of anyons would be to use the standard approach of this work – making use of

the Kerr-Schild form of metrics and cleverly using Killing vectors to find the time-independent

equations of motion.

Another avenue of research worth investigation is to consider using modified (generalised)

Kerr-Schild forms of the metric. This investigation has various potential benefits; it could bring

us closer to an understanding of between which theories a double copy procedure is possible

and, if we suppose that the most basic construction of this idea might entail a generalised form

[79]

gµν = ηµν + κϕkµkν +Kµν , (4.1)

for an additional term, Kµν . This form of the metric is referred to as an extended Kerr-Schild

metric (xKS) [79, 80], and we see that these xKS metrics would encapsulate the Kerr-Schild

double copy and enlarge the solution space (and applicability) of the double copy further,

provided solutions for non-trivial Kµν were found. Furthermore, understanding and pushing

further the limits of the classical double copy may lead to a better understanding of the CK

duality, a much sought-after and elusive goal of the double copy community.

Investigations into Kerr-Schild spacetimes with curved background spacetimes, taking the

form

gµν = g̃µν + κϕkµkν , (4.2)

have been done for maximally symmetric (de Sitter and Anti-de Sitter) background spacetimes

(g̃µν) [39]. One might consider extending this work using xKS metrics or by working with spaces
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that are not maximally symmetric, although this will likely present numerous difficulties. Other

work on Kerr-Schild metrics in curved spacetimes was done in [81], where it was shown that

the double copy may be used for certain conformally flat metrics.

Perhaps the most obvious extension of this work would be to simply work in other dimen-

sions. Topological terms may be found in arbitrary dimensions (see §B) and an investigation

into the topologically massive higher-dimensional (d > 3) double copy of these theories has not

yet been done. Work on higher-dimensional objects (e.g. black branes) has been done [7], and

extensions of this would be of interest.

Of interest to cosmologists would be to find a double copy (if it exists) of the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric (a spatially homogeneous and isotropic metric with

time dependence, typically used to describe an expanding/contracting universe). Understanding

what/which gauge theory corresponds to the single copy of the FLRW metric would potentially

provide additional insight into the gravitational theory. Of course, this metric departs from

the Kerr-Schild metrics discussed in this work. However, there may be a way to represent the

FLRW metric using either an xKS metric or perhaps making use of the generalised Gordon

Ansatz [82], which may make the research avenue tractable.

At this stage, it should be evident that there are numerous potential areas of investigation

into classical double copy theory that are all worthy of investigation. The same is true of

the scattering amplitudes programme [19]. Double copy theory is a fast-progressing, active

field of research whose implications are not yet fully understood. While this work by no means

introduces the reader to all the aspects of classical double copy theory, it should serve as a useful

resource for those wishing to be introduced to the fundamental ideas governing the theory, and

the fundamental examples of the theory at work. We expect that future work on the classical

and scattering amplitude programmes of the double copy, respectively, will produce enlightening

findings whose implications/effects will extend outside the context of double copy theory, itself.
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A A Brief Word on Shockwaves

Gravitational shockwave solutions to Einstein’s equations, derived in [56] are interesting solu-

tions to Einstein’s equations. In this section, we follow the original derivation by Aichelburg

and Sexl [56]. The original work [56] is thorough, but we direct the reader to [58] for a discussion

that is intended for those interested in classical double copy theory.

Aichelburg and Sexl sought to solve Einstein’s equations for a gravitational field whose source

was a massless particle. To do this, they applied two approaches:

1. In their first approach, the linearised Einstein equations are solved for a particle having

mass m and velocity v. The relativistic limit (v → 1) and massless limit (m → 0) are

taken, and it is found that in this limit the Einstein equations are the same as those of the

full (non-linearised) solution for an energy-momentum tensor having a massless particle

as its source.

2. The second approach is the ‘full’ solution approach; it begins with the Schwarzchild metric

(that is, the metric that precisely describes a particle at rest), on which a Lorentz boost

is performed such that the velocity approaches the speed of light (v → 1) and take the

massless limit is taken once again (m → 0).

In this section, we consider the second approach (the first approach is essentially done in-text

in §2.6.2), closely following [58]. We begin from the isotropic form of the Schwarzchild metric,

whose line element is [58, 83],

ds2 = −(1 −Q)2

(1 +Q)2 dt2 + (1 +Q)4(dx2 + dy2 + dz2), where

Q = m

2
√
x2 + y2 + z2 .

(A.1)

We choose not to use polar coordinates as we will soon wish to perform a Lorentz boost in a

particular direction, and this is most easily achieved with the specified coordinates. The line

element (A.1) can be rewritten as

ds2 = −dt2 + dx2 + dy2 + dz2 +
[
1 − (1 −Q)2

(1 +Q)2

]
dt2 −

[
1 − (1 +Q)4

]
(dx2 + dy2 + dz2). (A.2)
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We now perform a Lorentz boost in the z-direction, thus

t = t′ − vz′
√

1 − v2
, x = x′, y = y′, z = z′ − vt′√

1 − v2
. (A.3)

In terms of the boosted (primed) coordinates, the line element is

ds2 = −dt′2 + dx′2 + dy′2 + dz′2 +
[
1 − (1 −Q′)2

(1 +Q′)2

](dt′ − vdz′)2

1 − v2

−
[
1 − (1 +Q′)4

][
dx′2 + dy′2 + (dz′ − vdt′)2

1 − v2

]
,

(A.4)

where Q′ is expressed in terms of the boosted coordinates as

Q′ = m
√

1 − v2

2
√

(1 − v2)(x′2 + y′2) + (z′ − vt′)2 . (A.5)

In the v → 1 limit (letting m = p
√

1 − v2) we find that [56]

lim
v→1

Q′ = lim
v→1

p(1 − v2)
2
√

(1 − v2)(x′2 + y′2) + (z′ − vt′)2

=


p

2|z′−t′| , z′ ̸= t′,

∞, z′ = t′,

(A.6)

where, therefore, the spacetime has a singularity at z′ = t′. For all points having z′ ̸= t′, the

line element takes on the convenient (Brinkmann-like form)

ds2 = −dt′2 + dx′2 + dy′2 + dz′2 + 4p
|t′ − z′|

(dt′ − dz′)2, (A.7)

and will have vanishing Riemann curvature (in the primed coordinates and ‘off’ of z′ = t′). We

now make use of a non-trivial relation, proved by Aichelburg and Sexl in the appendix of [56];

it states:

lim
v→1

[
{(z′ − vt′)2 + (1 − v2)r2

⊥}−1/2 − {(z′ − vt′)2 + (1 − v2)}−1/2
]

= −2δ(z′ − t′) ln(r⊥), (A.8)
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where r2
⊥ = x′2 + y′2. This result could be used in (A.5) if we could find an appropriate

coordinate transformation, which exists and is presented in [56]

T (v) : z̃ − vt̃ = z′ − vt′

z̃ + vt̃ = z′ + vt′ − 4p ln
[√

(z′ − vt′)2 + (1 − v2) − (z′ − t′)
]
,

(A.9)

which leaves x′, y′, and Q′ invariant. Applying this transformation to the metric and expanding

around Q′ the line element is written as [56, 58]

ds2 = −dt̃2 + dx̃2 + dỹ2 + dz̃2 − 4pδ(z̃ − t̃) ln(x̃2 + ỹ2)(dz̃ − dt̃)2, (A.10)

which reduces to (A.7) for t′ ̸= z′ after performing the inverse coordinate transformation

T−1(v = 1). Quite interestingly, we can easily see that (A.10) is of the form of a pp-wave

metric, introduced in §2.6.1. Following a similar calculation as for that shown in the text, one

finds that the Einstein equations reduce to [53, 56]

R00 = R11 = −R01 = −(H,x′x′ +H,y′y′) = 8πpδ(x′)δ(y′)δ(t′ − z′)

⇒ Tµν = pδ(x′)δ(y′)δ(t′ − z′)sµsν ,

(A.11)

where sµ = δ0
µ + δ3

µ. Thus, the gravitational field of a massless (point) particle only has non-

vanishing Riemann curvature on the hypersurface x′ = y′ = 0, z′ = t′. Further analysis (not

presented here, see [56]) shows that the gravitational field behaves similarly to an electromag-

netic field, being dilated orthogonal to the boost direction and compressed parallel to the boost

direction, reducing to the hyperplane in the v → 1 limit.
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B Why ‘Topologically’ Massive?

As is mentioned at the start of §3, the topological contribution to the action is proportional to

the secondary Chern-Simons class; a topological entity. We briefly elaborate on that statement

now, following the discussion given in [61].

B.1 Even-Dimensional Chern-Simons Terms

In d = 2n, n ∈ Z+ (even dimensions), it is possible to use the existing gauge fields to construct

an additional gauge invariant quantity, the Pontryagin density, Pd, which, when integrated

over the total 2n-dimensional space, produces a topological invariant of the space. In the lowest

non-trivial dimensions, these are [61]

P2 ≡ 1
4πε

µνFµν

P4 ≡ − 1
16π2 tr

(1
2ε

µνρσFρσFµν

)
,

(B.1)

where the trace is over the Lie-algebra indices in the chosen representation (Fµν = T aF a
µν for a

chosen set of Lie-algebra generators T a), Fµν is the usual (potentially) non-Abelian gauge field

tensor, and where the trace normalisation depends on both which Lie algebra is being consid-

ered as well as chosen conventions e.g. Srednicki chooses to normalise su(N) by the condition

tr(T aT b) = 1
2δ

ab [84]. It is worth noting that the values P2 and P4 are covariant densities, and,

due to their independence from the metric they are topological entities, independent of the local

properties of the manifold where they exist [85]. Importantly, these gauge invariant Pontryagin

densities can be written as total derivatives of some gauge variant objects, Xµ
d as [61]

Pd = ∂µX
µ
d

⇒ Xµ
2 = 1

2πε
µνAν

⇒ Xµ
4 = − 1

16π2 ε
µαβγtr

(
AαFβγ − 2

3AαAβAγ

)
.

(B.2)

The vectors, Xµ, are called Chern-Simons currents or anomaly currents [85]. One recovers the

second characteristic Chern-Simons class (also called the Chern-Pontryagin gauge field invariant

[85]) by integrating Xµ over the (d − 1)-dimensions xν , ν ̸= µ. The Chern-Simons second

characteristic class is gauge invariant up to additive factors of (the discrete) winding number of

69



a gauge transformation.

B.2 Odd-Dimensional Chern-Simons Currents

It is anticipated that, throughout the reading of the preceding paragraphs and equations, the

reader may not be satisfied – this work is principally concerned with TMG in three dimensions,

whereas the preceding discussion has been limited to even-dimensional spaces. The link between

the even- and odd-dimensional cases may be described following discussions taken from [85]. One

notes that in the Chern-Simons currents, there is one free index that appears in the respective

Levi-Civita symbols, ε. Given that this is a totally antisymmetric object, none of the indices

are repeating, and so for any summed index α we know α ̸= µ (where µ is the free index). Thus,

for a particular value of the index µ, this index will not occur in any of the gauge field objects

(Aα, Fαβ) and, since these are the objects from which the Chern-Simons current is comprised,

we can construct odd, (d− 1)-dimensional, Chern-Simons terms from the even, d-dimensional,

Chern-Simons currents,

Xµ
2 = 1

2πε
µνAν ⇒ X1 = 1

2πA1

Xµ
4 = − 1

16π2 ε
µαβγtr

(
AαFβγ − 2

3AαAβAγ

)
⇒ X3 = − 1

16π2 ε
ijktr

(
AiFjk − 2

3AiAjAk

)
,

(B.3)

where i, j, k ̸= µ. These objects are evidently integrable in 1- and 3-dimensional space, respec-

tively, and their independence of the metric means that they may still be considered topological

entities.

B.2.1 Interpretation of Topological Quantities

What the integrals of the Chern-Simons terms reveal about the topological content of their

spaces is dependent upon what they represent. The integral of the Abelian form of the 3-

dimensional term,

H(A) :=
∫
X3d3x =

∫
εijkAi∂jAkd3x, (B.4)

is interpreted as the magnetic helicity, H(A), (which measures the extent to which the field

lines are linked/wrapped around one another) when Ai is the electromagnetic vector potential

and εijk∂jAk = Bi is the magnetic field [85, 86]. If one also considers a smooth (C∞), arc-

length-parametrized curve, γ, in three dimensions, then one can define the writhing number,
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Wr(γ), which measures the extent to which the curve, γ, is linked/wrapped around itself and

is expressed as [86]

Wr(γ) = 1
4π

∫
γ×γ

(dx
dt

× dy

ds

) x− y

|x− y|3
dsdt. (B.5)

It does not seem particularly surprising that the writhing number is related to the helicity, and

this relationship can be expressed succinctly as H(A) = Flux(A)2Wr(γ) [86, 87].

An alternative context for the calculation of topological content arises when we identify

Ai ≡ vi ≡ (the velocity of a fluid), then εijk∂jAk ≡ wi ≡ (the vorticity of the fluid), whose

integral (i.e. integrating the appropriate n-dimensional Chern-Simons current/term in (B.3))

is the kinetic vorticity of the fluid [85].

Finally, it is worth considering the gravitational perspective. In this case, we obtain a

3-dimensional Chern-Simons term from a 4-dimensional Hirzebruch-Pontryagin density [61]

∂µX
µ := 1

2ε
µναβRµνρσR

ρσ
αβ . (B.6)

The Chern-Simons term appearing in (3.35) comes (as was done previously) by performing the

3-dimensional integral over the unused indices.

The links between topology and this work (and, in fact, physics in general) is a continuously

developing field, and all of the links cannot possibly be discussed here. We point the reader

to the citations herein for a brief overview of links to this work, but also recommend [70] as a

useful guide to explore the relationships between topology and physics.
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C Useful Code - xAct in Action

In this section of the appendices, we include some of the code used in obtaining the results of

this work. As with all ‘good’ science, results should be reproducible by a colleague utilising the

same equipment/tools. The installation instructions etc, for the xAct and diffgeo packages are

not included here and are left to the reader, but some instructions can be found at [34]. All

code extracts reproduced in this section (for this work) were written by the author, however, a

particularly useful introduction can be found at [88].

In §2.2, we calculated the Ricci tensor for a generic Kerr-Schild metric. This can easily be

done using xAct [34], and the code employed is presented below. The next calculation included

is the calculation of the gravitational equations of motion. Of course, the latter can be done by

hand despite being tedious, but it is useful to show that the same result can be obtained using

xAct.

In §3.3, it is noted that the “diffgeo” package [77] may be used – although it is emphasized

that this package is not a part of the xAct package. However, it was found to be quite practical in

verifying calculations done by hand, and Mathematica users unfamiliar with xAct and xCoba

will likely find it more intuitive to learn (despite being vastly more limited than xAct in its

capabilities).
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Kerr-Schild Ricci Tensor
We attempt to reproduce known results for the form of the Ricci 
Tensor in Kerr-Schild Coordinates

Import Packages

In[1]:= << xAct`xTensor`
<< xAct`xPert`

------------------------------------------------------------

Package xAct`xPerm` version 1.2.3, {2015, 8, 23}

CopyRight (C) 2003-2020, Jose M. Martin-Garcia, under the General Public License.

Connecting to external mac executable...

Connection established.

------------------------------------------------------------

Package xAct`xTensor` version 1.2.0, {2021, 10, 17}

CopyRight (C) 2002-2021, Jose M. Martin-Garcia, under the General Public License.

------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type
Disclaimer[]. This is free software, and you are welcome to redistribute
it under certain conditions. See the General Public License for details.

------------------------------------------------------------

------------------------------------------------------------

Package xAct`xPert` version 1.0.6, {2018, 2, 28}

CopyRight (C) 2005-2020, David Brizuela, Jose M. Martin-Garcia
and Guillermo A. Mena Marugan, under the General Public License.

------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type
Disclaimer[]. This is free software, and you are welcome to redistribute
it under certain conditions. See the General Public License for details.

------------------------------------------------------------

** Variable $PrePrint assigned value ScreenDollarIndices

** Variable $CovDFormat changed from Prefix to Postfix

** Option AllowUpperDerivatives of ContractMetric changed from False to True

** Option MetricOn of MakeRule changed from None to All

** Option ContractMetrics of MakeRule changed from False to True

Printed by Wolfram Mathematica Student Edition



Define Manifold, Metric, Metric Perturbation

In[3]:= DefManifold[M3, 3, {α, β, γ, ρ, σ, τ, μ, ν, λ}]

DefMetric[-1, metric[-α, -β], CD, PrintAs → "g" ]

(*Colour power indices*)
Unprotect[IndexForm];
IndexForm[LI[x_]] := ColorString[ToString[x], RGBColor[0, 0, 1]];
Protect[IndexForm];

DefMetricPerturbation[metric, metpert, ϵ];
PrintAs[metpert] ^= "h";

** DefManifold: Defining manifold M3.

** DefVBundle: Defining vbundle TangentM3.

** DefTensor: Defining symmetric metric tensor metric[-α, -β].

** DefTensor: Defining antisymmetric tensor epsilonmetric[-α, -β, -γ].

** DefCovD: Defining covariant derivative CD[-α].

** DefTensor: Defining vanishing torsion tensor TorsionCD[α, -β, -γ].

** DefTensor: Defining symmetric Christoffel tensor ChristoffelCD[α, -β, -γ].

** DefTensor: Defining Riemann tensor RiemannCD[-α, -β, -γ, -λ].

** DefTensor: Defining symmetric Ricci tensor RicciCD[-α, -β].

** DefCovD: Contractions of Riemann automatically replaced by Ricci.

** DefTensor: Defining Ricci scalar RicciScalarCD[].

** DefCovD: Contractions of Ricci automatically replaced by RicciScalar.

** DefTensor: Defining symmetric Einstein tensor EinsteinCD[-α, -β].

** DefTensor: Defining vanishing Weyl tensor WeylCD[-α, -β, -γ, -λ].

** DefTensor: Defining symmetric TFRicci tensor TFRicciCD[-α, -β].

** DefTensor: Defining Kretschmann scalar KretschmannCD[].

** DefCovD: Computing RiemannToWeylRules for dim 3

** DefCovD: Computing RicciToTFRicci for dim 3

** DefCovD: Computing RicciToEinsteinRules for dim 3

** DefTensor: Defining weight +2 density Detmetric[]. Determinant.

** DefParameter: Defining parameter ϵ.

** DefTensor: Defining tensor metpertLIorder, -α, -β.

Find Perturbed Ricci Tensor

In[10]:= PerturbedRicci =

Perturbed[RicciCD[α, -β], 1] // ExpandPerturbation // ToCanonical //

ContractMetric

Out[10]= R[▽]α
β - ϵ h1αγ R[▽]βγ -

1

2
ϵ h1γ ;α

γ;β
+
1

2
ϵ h1 γ;α

β ;γ
+
1

2
ϵ h

1αγ
;β;γ -

1

2
ϵ h1 α;γ

β ;γ

2     KSRicciPert.nb

Printed by Wolfram Mathematica Student Edition



Apply Simplifying Rules

In[11]:= (*set ricci tensor to zero*)
ricciflattensor = RicciCD[x_, y_] ⧴ 0
(*killing form of metpert*)
tracelesspert = metpert[LI[1], x_, -x_] ⧴ 0

Out[11]= R[▽]xy ⧴ 0

Out[12]= h1xx ⧴ 0

In[13]:= PerturbedRicci /. ricciflattensor

Out[13]= -
1

2
ϵ h1γ ;α

γ;β
+
1

2
ϵ h1 γ;α

β ;γ
+
1

2
ϵ h

1αγ
;β;γ -

1

2
ϵ h1 α;γ

β ;γ

In[14]:= % /. tracelesspert

Out[14]=
1

2
ϵ h1 γ;α

β ;γ
+
1

2
ϵ h

1αγ
;β;γ -

1

2
ϵ h1 α;γ

β ;γ

In[15]:= ChangeCovD[%, CD, PD] /. (ChristoffelCD[x__] ⧴ 0) // ContractMetric

Out[15]=
1

2
ϵ h1 γ,α

β ,γ +
1

2
ϵ h1αγ,β,γ -

1

2
ϵ h1 α,γ

β ,γ

KSRicciPert.nb     3
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TMG Equations of Motion
We attempt to use xAct to find the EoMs for TMG

Import Packages

In[!]:= << xAct`xTensor`
<< xAct`xPert`
$PrePrint = ScreenDollarIndices;

------------------------------------------------------------

Package xAct`xPerm` version 1.2.3, {2015, 8, 23}

CopyRight (C) 2003-2020, Jose M. Martin-Garcia, under the General Public License.

Connecting to external mac executable...

Connection established.

------------------------------------------------------------

Package xAct`xTensor` version 1.2.0, {2021, 10, 17}

CopyRight (C) 2002-2021, Jose M. Martin-Garcia, under the General Public License.

------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type
Disclaimer[]. This is free software, and you are welcome to redistribute
it under certain conditions. See the General Public License for details.

------------------------------------------------------------

------------------------------------------------------------

Package xAct`xPert` version 1.0.6, {2018, 2, 28}

CopyRight (C) 2005-2020, David Brizuela, Jose M. Martin-Garcia
and Guillermo A. Mena Marugan, under the General Public License.

------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type
Disclaimer[]. This is free software, and you are welcome to redistribute
it under certain conditions. See the General Public License for details.

------------------------------------------------------------

** Variable $PrePrint assigned value ScreenDollarIndices

** Variable $CovDFormat changed from Prefix to Postfix

** Option AllowUpperDerivatives of ContractMetric changed from False to True

** Option MetricOn of MakeRule changed from None to All

** Option ContractMetrics of MakeRule changed from False to True

Printed by Wolfram Mathematica Student Edition



Define Manifold, Metric, Perturbations, Constants

In[!]:= DefManifold[M3, 3, {α, β, γ, ρ, σ, τ, μ, ν, λ}]

DefMetric[-1, metric[-α, -β], CD, {";", "∇"}, PrintAs → "g"]

(*Colour 'power' indices*)
Unprotect[IndexForm];
IndexForm[LI[x_]] := ColorString[ToString[x], RGBColor[1, 0, 0]];
Protect[IndexForm];

DefMetricPerturbation[metric, metpert, ζ]

PrintAs[metpert] ^= "δg"

DefConstantSymbol[κ]
DefConstantSymbol[m]

** DefManifold: Defining manifold M3.

** DefVBundle: Defining vbundle TangentM3.

** DefTensor: Defining symmetric metric tensor metric[-α, -β].

** DefTensor: Defining antisymmetric tensor epsilonmetric[-α, -β, -γ].

** DefCovD: Defining covariant derivative CD[-α].

** DefTensor: Defining vanishing torsion tensor TorsionCD[α, -β, -γ].

** DefTensor: Defining symmetric Christoffel tensor ChristoffelCD[α, -β, -γ].

** DefTensor: Defining Riemann tensor RiemannCD[-α, -β, -γ, -λ].

** DefTensor: Defining symmetric Ricci tensor RicciCD[-α, -β].

** DefCovD: Contractions of Riemann automatically replaced by Ricci.

** DefTensor: Defining Ricci scalar RicciScalarCD[].

** DefCovD: Contractions of Ricci automatically replaced by RicciScalar.

** DefTensor: Defining symmetric Einstein tensor EinsteinCD[-α, -β].

** DefTensor: Defining vanishing Weyl tensor WeylCD[-α, -β, -γ, -λ].

** DefTensor: Defining symmetric TFRicci tensor TFRicciCD[-α, -β].

** DefTensor: Defining Kretschmann scalar KretschmannCD[].

** DefCovD: Computing RiemannToWeylRules for dim 3

** DefCovD: Computing RicciToTFRicci for dim 3

** DefCovD: Computing RicciToEinsteinRules for dim 3

** DefTensor: Defining weight +2 density Detmetric[]. Determinant.

** DefParameter: Defining parameter ζ.

** DefTensor: Defining tensor metpertLIorder, -α, -β.

Out[!]= δg

** DefConstantSymbol: Defining constant symbol κ.

** DefConstantSymbol: Defining constant symbol m.

2     
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In[!]:= Lex =
1

κ2
Sqrt[-Detmetric[]] (-RicciScalarCD[])

Lexpert = Perturbation[Lex]
Print["Expanding Perturbation"]
%% // ExpandPerturbation
Print["Contracting Metric"]
%% // ContractMetric
Print["Canonicalising"]
%% // ToCanonical
Lexpert = %;

RHSex =

2 (-VarD[metpert[LI[1], α, β], CD][Lexpert] / Sqrt[-Detmetric[]] /. delta[-LI[1],
LI[1]] → 1 // SeparateMetric[metric] //

RicciToEinstein) // Expand // ContractMetric // ToCanonical
Print["EOM is:"]
0 ⩵ RHSex // FullSimplify

Out[!]= -
-g


R[∇]

κ2

Out[!]= -

-g


△[R[∇]] -
△[g


] R[∇]

2 -g


κ2

Expanding Perturbation

Out[!]= -
1

κ2
-
g


δg1 λ
λ R[∇]

2 -g


+

-g


- δg1αβ R[∇]αβ + gαβ
1

2
- δg1γ

γ;β;α - δg1γ
β;γ;α + δg1 ;γ

βγ ;α
 +

1

2
 δg1γ

β;α;γ + δg1γ
α;β;γ - δg1 ;γ

βα ;γ


Contracting Metric

Out[!]=

-g


δg1αβ R[∇]αβ

κ2
-

-g


δg1 α
α R[∇]

2 κ2
+

-g


δg1β ;α
β ;α

2 κ2
+

-g


δg1βα
;β;α

2 κ2
-

-g


δg1α ;β
β ;α

2 κ2
-

-g


δg1βα
;α;β

κ2
+

-g


δg1α ;β
α ;β

2 κ2

Canonicalising

Out[!]=

-g


δg1αβ R[∇]αβ

κ2
-

-g


δg1α
α R[∇]

2 κ2
-

-g


δg1αβ
;α;β

κ2
+

-g


δg1α ;β
α ;β

κ2

    3
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Out[!]= -
2 G[∇]αβ

κ2

EOM is:

Out[!]=
G[∇]αβ

κ
⩵ 0

Define Lagrangian

In[!]:= ℒ =
1

κ2
Sqrt[-Detmetric[]]

-RicciScalarCD[] -
1

2 m
epsilonmetric[μ, ν, ρ] ChristoffelCD[α, -μ, -σ] ×

PD[-ν][ChristoffelCD[σ, -α, -ρ]] +
2

3
ChristoffelCD[α, -μ, -σ] ×

ChristoffelCD[σ, -ν, -β] × ChristoffelCD[β, -ρ, -α]

Out[!]=

-g


-R[∇] -
ϵgμνρ 

2
3
Γ[∇]αμσ Γ[∇]βρα Γ[∇]σνβ +Γ[∇]αμσ Γ[∇]σαρ,ν 

2 m

κ2

Perform variation as is done in example - NB: Take note of ToCanonical 
method used here

In[!]:= Lpert = ToCanonical[#, UseMetricOnVBundle → None] &@
ContractMetric@ExpandPerturbation@Perturbation@ℒ

Out[!]=

-g


δg1αβ R[∇]αβ

κ2
-

-g


δg1α
α R[∇]

2 κ2
-

Γ[∇]α
βγ Γ[∇]β

λμ -g


ϵgγμν δg1λ
ν;α

2 m κ2
-

-g


δg1α ;β
β ;α

2 κ2
-

-g


δg1αβ
;α;β

2 κ2
+

-g


δg1α ;β
α ;β

κ2
+

Γ[∇]α
βγ Γ[∇]β

λμ -g


ϵgγμν δg1 ;λ
αν

2 m κ2
-

Γ[∇]α
βγ Γ[∇]β

λμ -g


ϵgγμν δg1 λ
α ;ν

2 m κ2
-

-g


ϵgβλμ δg1 ;γ
αβ Γ[∇]α

γλ,μ

4 m κ2
+

-g


ϵgγλμ δg1α
β;γ Γ[∇]β

αλ,μ

4 m κ2
+

-g


ϵgβλμ δg1α
β;γ Γ[∇]γ

αλ,μ

4 m κ2
+

Γ[∇]α
βγ -g


ϵgγλμ δg1β

λ;α,μ

4 m κ2
-

Γ[∇]α
βγ -g


ϵgγλμ δg1 ;β

αλ ,μ

4 m κ2
+

Γ[∇]α
βγ -g


ϵgγλμ δg1 β

α ;λ,μ

4 m κ2

4     
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Now take variational derivatives

In[!]:= RHS =

(-2 VarD[metpert[LI[1], μ, ν], CD][Lpert] / Sqrt[-Detmetric[]] /. delta[-LI[1],
LI[1]] → 1 // SeparateMetric[metric] // RicciToEinstein) // Expand //

ContractMetric // ToCanonical[#, UseMetricOnVBundle → None] & // FullSimplify

Out[!]=
1

4 m κ2
-8 m G[∇]μν + ϵgνβγ  Γ[∇]α β;γ

μ ;α
- Γ[∇] αβ;γ

μ ;α
 +

ϵgμβγ  Γ[∇]α β;γ
ν ;α

- Γ[∇] αβ;γ
ν ;α

 + ϵg βγ
ν Γ[∇]α

μβ,γ;α + ϵg βγ
μ Γ[∇]α

νβ,γ;α +

ϵg γ
αβ  Γ[∇] α;β

μν ;γ
+ Γ[∇] α;β

νμ ;γ
 - ϵg λρ

ν gβγ gμα Γ[∇]α
βλ,ρ;γ +

gνα - ϵg λρ
μ gβγ Γ[∇]α

βλ,ρ;γ + ϵgβγλ Γ[∇]α
μβ,γ;λ + ϵgβγλ gμα Γ[∇]α

νβ,γ;λ

    5
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Quick DiffGeo Usage
Before importing one must define the coordinates being used and the form 
of the metric. Here we use the 3D Kerr-Schild metric.

In[1]:= coord = {u, v, x};
metric = {{κ ϕ[u, x], -1, 0}, {-1, 0, 0}, {0, 0, 1}};
$Assumptions = And[u ∈ Reals, v ∈ Reals, x ∈ Reals, κ ∈ Reals, m > 0];
metricsign = -1;

Import diffgeo

In[5]:= << diffgeo`

Immediately have access to all sorts of quantities (see 
https://people.brandeis.edu/~headrick/Mathematica/diffgeoManual.nb for 
more)

In[6]:= display[Christoffel]

Out[6]=

{v, u, x}
{v, x, u}
{x, u, u}

- 1
2
κ ϕ(0,1)[u, x]

{v, u, u} - 1
2
κ ϕ(1,0)[u, x]

In[7]:= display[Riemann]

Out[7]=

{u, x, u, x}
{u, x, x, v}

- 1
2
κ ϕ(0,2)[u, x]

{x, u, u, x}
{x, u, x, v}

1
2
κ ϕ(0,2)[u, x]

In[8]:= display[Cotton]

Out[8]= {u, u} - 1
2
κ ϕ(0,3)[u, x]
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Can now easily verify e.g. that the choice of k-vector is covariantly conserved. 
Also verify k·V = 1.

In[9]:= k = zeroTensor[1];
k[[v]] = 1;
k
V = zeroTensor[1];
V[[u]] = -1;
(*lower index on k*)
kl = lower[k]
covariant[kl]
kl.V

Out[11]= {0, 1, 0}

Out[14]= {-1, 0, 0}

Out[15]= {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}

Out[16]= 1

2     DiffGeoChristoffel.nb
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Gravitzionali (1965). Ed. by G Barbèra. doi: 10.1007/s10712-009-0857-z.

[32] H Stephani et al. Exact Solutions of Einstein’s Field Equations. 2nd ed. Cambridge

Monographs on Mathematical Physics. Cambridge University Press, 2003. doi:

10.1017/CBO9780511535185.

[33] Wolfram Research, Inc. Mathematica, Version 13.1. Champaign, IL, 2022. url:

https://www.wolfram.com/mathematica.
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[35] M Carrillo-González et al. The classical double copy in three spacetime dimensions. 2019.

doi: 10.48550/ARXIV.1904.11001. url: https://arxiv.org/abs/1904.11001.

[36] F Cachazo, S He, and E Yuan. “Scattering of massless particles: scalars, gluons and

gravitons”. In: Journal of High Energy Physics 2014.7 (2014). doi:

10.1007/jhep07(2014)033. url:

https://doi.org/10.1007\%2Fjhep07\%282014\%29033.

[37] R Jackiw. “Introduction to the Yang-Mills quantum theory”. In: Rev. Mod. Phys. 52 (4

1980), pp. 661–673. doi: 10.1103/RevModPhys.52.661. url:

https://link.aps.org/doi/10.1103/RevModPhys.52.661.

[38] A Ridgway and M Wise. “Static spherically symmetric Kerr-Schild metrics and

implications for the classical double copy”. In: Physical Review D 94.4 (2016). doi:

86

https://doi.org/10.1007/jhep07(2013)111
https://doi.org/10.1007%2Fjhep07%282013%29111
https://doi.org/10.1090/psapm/017
https://doi.org/10.1007/s10712-009-0857-z
https://doi.org/10.1017/CBO9780511535185
https://www.wolfram.com/mathematica
http://www.xact.es/index.html
https://doi.org/10.48550/ARXIV.1904.11001
https://arxiv.org/abs/1904.11001
https://doi.org/10.1007/jhep07(2014)033
https://doi.org/10.1007\%2Fjhep07\%282014\%29033
https://doi.org/10.1103/RevModPhys.52.661
https://link.aps.org/doi/10.1103/RevModPhys.52.661


10.1103/physrevd.94.044023. url:

https://doi.org/10.1103\%2Fphysrevd.94.044023.

[39] M Carrillo-Gonzalez, R Penco, and M Trodden. The classical double copy in maximally

symmetric spacetimes. 2017. doi: 10.48550/ARXIV.1711.01296. url:

https://arxiv.org/abs/1711.01296.

[40] R Monteiro and D O’Connell. “The kinematic algebra from the self-dual sector”. In:

Journal of High Energy Physics 2011.7 (2011). doi: 10.1007/jhep07(2011)007. url:

https://doi.org/10.1007%2Fjhep07%282011%29007.
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